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Introduction

These notes include major definitions, theorems, and proofs for the graph theory course
given by Prof. Maria Axenovich at KIT during the winter term 2019/20. Most of the
content is based on the book “Graph Theory” by Reinhard Diestel [4]. A free version
of the book is available at http://diestel-graph-theory.com.

Conventions:

• G = (V,E) is an arbitrary (undirected, simple) graph

• n := |V | is its number of vertices

• m := |E| is its number of edges

Notation

notation definition meaning(
V
k

)
, V finite set,

k integer
{S ⊆ V : |S| = k} the set of all k-element

subsets of V

V 2, V finite set {(u, v) : u, v ∈ V, u 6= v} the set of all ordered pairs
of elements in V

[n], n integer {1, . . . , n} the set of the first n posi-
tive integers

N 1, 2, . . . the natural numbers, not
including 0

2S , S finite set {T : T ⊆ S} the power set of S, i.e.,
the set of all subsets of S

S4T , S, T finite sets (S ∪ T ) \ (S ∩ T ) the symmetric difference
of sets S and T , i.e., the
set of elements that ap-
pear in exactly one of S
or T

A∪̇B, A, B disjoint sets A ∪B the disjoint union of A
and B
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1 Preliminaries

Definition 1.1. A graph, Ggraph G is an ordered pair (V,E), where V is a finite set and

E ⊆
(
V
2

)
is a set of pairs of elements in V .

• The set V is called the set of vertex, edgevertices and E is called the set of edges of G.

• The edge e = {u, v} ∈
(
V
2

)
is also denoted by e = uv.

• If e = uv ∈ E is an edge of G, then u is called adjacent, incidentadjacent to v and u is called
incident to e.

• If e1 and e2 are two edges of G, then e1 and e2 are called adjacent if e1 ∩ e2 6= ∅,
i.e., the two edges are incident to the same vertex in G.

We can visualize graphs G = (V,E) using pictures. For each vertex v ∈ V we draw a
point (or small disc) in the plane. And for each edge uv ∈ E we draw a continuous
curve starting and ending in the point/disc for u and v, respectively.

Several examples of graphs and their corresponding pictures follow:

V = [5], E = {12, 13, 24}

V = {A,B,C,D,E},
E = {AB,AC,AD,AE,CE}

Definition 1.2 (Graph variants).

• A directed graph directed graphis a pair G = (V,A) where V is a finite set and A ⊆ V 2. The
edges of a directed graph are also called arcs arc.

• A multigraph multigraphis a pair G = (V,E) where V is a finite set and E is a multiset of

elements from
(
V
1

)
∪
(
V
2

)
, i.e., we also allow loops and multiedges.

• A hypergraph hypergraphis a pair H = (X,E) where X is a finite set and E ⊆ 2X \ {∅}.

Definition. For two graphs G1 = (V1, E1) and G2 = (V2, E2) we say that G1 and
G2 are isomorphic isomorphic, ', denoted by G1 ' G2, if there exists a bijection φ : V1 → V2 with
xy ∈ E1 if and only if φ(x)φ(y) ∈ E2. Loosely speaking, G1 and G2 are isomorphic if
they are the same up to renaming of vertices.

When making structural comments, we do not normally distinguish between isomor-
phic graphs. Hence, we usually write G1 = G2 =instead of G1 ' G2 whenever vertices
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are indistinguishable. Then we use the informal expression unlabeled graph unlabeled graph(or just
graph when it is clear from the context) to mean an isomorphism class of graphs.

Important graphs and graph classes

Definition. For all natural numbers n we define:

• the complete graph complete graph,
Kn

Kn on n vertices as the (unlabeled) graph isomorphic to(
[n],

(
[n]
2

))
. We also call complete graphs cliques.

• for n ≥ 3, the cycle cycle, CnCn on n vertices as the (unlabeled) graph isomorphic to(
[n],

{
{i, i+ 1} : i = 1, . . . , n− 1

}
∪
{
n, 1
})

. The length of a cycle is its number
of edges. We write Cn = 12 . . . n1. The cycle of length 3 is also called a triangle triangle.

• the path path, PnPn on n vertices as the (unlabeled) graph isomorphic to
(
[n],

{
{i, i+1} :

i = 1, . . . , n− 1
})

. The vertices 1 and n are called the endpoints or ends of the
path. The length of a path is its number of edges. We write Pn = 12 . . . n.

• the empty graph empty graph, EnEn on n vertices as the (unlabeled) graph isomorphic to
(
[n], ∅

)
.

Empty graphs correspond to independent sets.
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• for m ≥ 1, the complete bipartite graph complete bipartite
graph, Km,n

Km,n on n+m vertices as the (unlabeled)
graph isomorphic to (A ∪ B, {xy : x ∈ A, y ∈ B}), where |A| = m and |B| = n,
A ∩B = ∅.

• for r ≥ 2, a complete r-partite complete r-partitegraph as an (unlabeled) graph isomorphic to(
A1∪̇ · · · ∪̇Ar, {xy : x ∈ Ai, y ∈ Aj , i 6= j}

)
,

where A1, . . . , Ar are non-empty finite sets. In particular, the complete bipartite
graph Km,n is a complete 2-partite graph.

• the Petersen graph Petersen graphas the (unlabeled) graph isomorphic to((
[5]

2

)
,
{
{S, T} : S, T ∈

(
[5]

2

)
, S ∩ T = ∅

})
.

• for a natural number k, k ≤ n, the Kneser graph Kneser graph,
K(n, k)

K(n, k) as the (unlabeled)
graph isomorphic to((

[n]

k

)
,

{
{S, T} : S, T ∈

(
[n]

k

)
, S ∩ T = ∅

})
.

Note that K(5, 2) is the Petersen graph.
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• the n-dimensional hypercube hypercube, QnQn as the (unlabeled) graph isomorphic to(
2[n],

{
{S, T} : S, T ∈ 2[n], |S4T | = 1

})
.

Vertices are labeled either by corresponding sets or binary indicators vectors.
For example the vertex {1, 3, 4} in Q6 is coded by (1, 0, 1, 1, 0, 0, 0).

Basic graph parameters and degrees

Definition 1.3. Let G = (V,E) be a graph. We define the following parameters of
G.

• The graph G is non-trivial non-trivialif it contains at least one edge, i.e., E 6= ∅. Equiva-
lently, G is non-trivial if G is not an empty graph.

• The order of G order, |G|, denoted by |G|, is the number of vertices of G, i.e., |G| = |V |.
• The size of G size, ‖G‖, denoted by ‖G‖, is the number of edges of G, i.e., ‖G‖ = |E|.

Note that if the order of G is n, then the size of G is between 0 and
(
n
2

)
.

• Let S ⊆ V be a set of vertices. The neighbourhood of S neighbourhood,
N(v)

, denoted by N(S), is the
set of vertices in V that have an adjacent vertex in S. The elements of N(S) are
called neighbours neighbourof S. Instead of N({v}) for v ∈ V we usually write N(v).
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• If the vertices of G are labeled v1, . . . , vn, then there is an n× n matrix A with
entries in {0, 1}, which is called the adjacency matrix adjacency matrixand is defined as follows:

vivj ∈ E ⇔ A[i, j] = 1

A =


0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0


A graph and its adjacency matrix.

• The degree degree, d(v)of a vertex v of G, denoted by d(v) or deg(v), is the number of
edges incident to v.

deg(v1) = 2, deg(v2) = 3, deg(v3) = 2, deg(v4) = 1

• A vertex of degree 1 in G is called a leaf leaf, and a vertex of degree 0 in G is called
an isolated vertex isolated vertex.

• The degree sequence degree sequenceof G is the multiset of degrees of vertices of G, e.g. in the
example above the degree sequence is {1, 2, 2, 3}.

• The minimum degree of G minimum degree,
δ(G)

, denoted by δ(G), is the smallest vertex degree in G
(it is 1 in the example).

• The maximum degree of G maximum degree,
∆(G)

, denoted by ∆(G), is the highest vertex degree in G
(it is 3 in the example).

• The graph G is called k-regular regularfor a natural number k if all vertices have
degree k. Graphs that are 3-regular are also called cubic cubic.

• The average degree of G average degree,
d(G)

is defined as d(G) =
(∑

v∈V deg(v)
)
/|V |. Clearly, we

have δ(G) ≤ d(G) ≤ ∆(G) with equality if and only if G is k-regular for some k.
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Lemma 1 (Handshake Lemma, 1.2.1). For every graph G = (V,E) we have

2|E| =
∑
v∈V

d(v).

Proof. Let X = {(e, x) : e ∈ E(G), x ∈ V (G), x ∈ e}. Then

|X| =
∑

v∈V (G)

d(x)

and
|X| =

∑
e∈E(G)

2 = 2|E(G)|.

The result follows.

Corollary 2. The sum of all vertex degrees is even and therefore the number of
vertices with odd degree is even.

Subgraphs

Definition 1.4.

• A graph H = (V ′, E′) is a subgraph of G subgraph, ⊆, denoted by H ⊆ G, if V ′ ⊆ V and
E′ ⊆ E. If H is a subgraph of G, then G is called a supergraph of H supergraph, ⊇, denoted
by G ⊇ H. In particular, G1 = G2 if and only if G1 ⊆ G2 and G1 ⊇ G2.

⊆
• A subgraph H of G is called an induced subgraph induced subgraphof G if for every two vertices
u, v ∈ V (H) we have uv ∈ E(H)⇔ uv ∈ E(G). In the example above H is not
an induced subgraph of G. Every induced subgraph of G can be obtained by
deleting vertices (and all incident edges) from G.

Examples:
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• Every induced subgraph of G is uniquely defined by its vertex set. We write
G[X] G[X]for the induced subgraph of G on vertex set X, i.e., G[X] =

(
X,
{
xy :

x, y ∈ X, xy ∈ E(G)
})

. Then G[X] is called the subgraph of G induced by the
vertex set X ⊆ V (G).

Example: G and G[{1, 2, 3, 4}]:

• If H and G are two graphs, then an (induced) copy copyof H in G is an (induced)
subgraph of G that is isomorphic to H.

• A subgraph H = (V ′, E′) of G = (V,E) is called a spanning subgraph spanning
subgraph

of G if
V ′ = V .

• A graph G = (V,E) is called bipartite bipartiteif there exists natural numbers m,n such
that G is isomorphic to a subgraph of Km,n. In this case, the vertex set can be
written as V = A∪̇B such that E ⊆ {ab | a ∈ A, b ∈ B}. The sets A and B are
called partite sets of G partite sets.

• A cycle (path, clique) cliquein G is a subgraph H of G that is a cycle (path, complete
graph).

• An independent set independent setin G is an induced subgraph H of G that is an empty graph.

• A walk walk(of length k) is a non-empty alternating sequence v0e0v1e1 · · · ek−1vk of
vertices and edges in G such that ei = {vi, vi+1} for all i < k. If v0 = vk, the
walk is closed closed walk.

• Let A,B ⊆ V . A path P in G is called an A-B-path A-B-pathif P = v1 . . . vk, V (P )∩A =
{v1} and V (P ) ∩ B = {vk}. When A = {a} and B = {b}, we simply call P an
a-b-path. If G contains an a-b-path we say that the vertices a and b are linked
by a path.

• Two paths P, P ′ in G are called independent independent pathsif every vertex contained in both
P and P ′ (if any) is an endpoint of P and P ′. I.e., P and P ′ can share only
endpoints.

• A graph G is called connected connectedif any two vertices are linked by a path.

• A subgraph H of G is maximal, minimalmaximal , respectively minimal , with respect to some prop-
erty if there is no supergraph, respectively subgraph, of H with that property.

• A maximal connected subgraph of G is called a connected component componentof G.

• A graph G is called acyclic acyclicif G does not have any cycle. Acyclic graphs are also
called forests forest.

• A graph G is called a tree treeif G is connected and acyclic.
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Proposition 3. If a graph G has minimum degree δ(G) ≥ 2, then G has a path of
length δ(G) and a cycle with at least δ(G) + 1 vertices.

Proof. Let P = (x0, . . . , xk) be a longest path in G. Then N(x0) ⊆ V (P ), otherwise
(x, x0, x1, . . . , xk) is a longer path, for x ∈ N(x0) \ V (P ). Let i be the largest index
such that xi ∈ N(x0), then i ≥ |N(x0)| ≥ δ. So, (x0, x1, . . . , xi, x0) is a cycle of length
at least δ(G) + 1.

Proposition 4. If for distinct vertices u and v a graph has a u-v-walk, then it has a
u-v-path.

Proof. Consider a u-v-walk W with the smallest number of edges. Assume that W
does not form a path, then there is a repeated vertex, w, i.e.,

W = u, e, v1, e1, . . . , ek, w, ek+1, . . . , e`, w, e`+1, . . . , v.

Then W1 = u, e, v1, . . . , ek, w, e`+1, . . . , v is a shorter u-v-walk, a contradiction.

Proposition 5. If a graph has a closed walk of odd length, then it contains an
odd cycle.

Proof. Let W be a closed odd walk of the smallest length. If it is a cycle, we are done.
Otherwise there is a repeated vertex, so W is an edge-disjoint union of two closed
walks. Since the sum of the lengths of these walks is odd, one of them is an odd closed
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walk with length strictly less that the length of W . A contradiction to the minimality
of W .

Proposition 6. If a graph has a closed walk with a non-repeated edge, then the graph
contains a cycle.

Proof. Let W be a shortest closed walk with a non-repeated edge e. If W is a cycle, we
are done. Otherwise, there is a repeated vertex and W is a union of two closed walks
W1 and W2 that are shorter than W . One of them, say W1, contains e, a non-repeated
edge. This contradicts the minimality of W .

Proposition 1.5. A graph is bipartite if and only if it has no cycles of odd length.

Proof. Assume that G is a bipartite graph with parts A and B. Then any cycle has
a form a1, b1, a2, b2, . . . , ak, bk, a1, where ai ∈ A, bi ∈ B, i ∈ [k]. Thus any cycle has
even length.

Now assume that G does not have cycles of odd length. We shall prove that G is
bipartite. We can assume that G is connected, because otherwise we can treat the
connected components separately. Let v ∈ V (G). Let A = {u ∈ V (G) : dist(u, v) ≡ 0
(mod 2)}. Let B = {u ∈ V (G) : dist(u, v) ≡ 1 (mod 2)}. We claim that G is
bipartite with parts A and B. To verify that it is sufficient to prove that A and B
are independent sets. Let u1u2 ∈ E(G). Let P1 be a shortest u1-v-path and P2 be
a shortest u2-v-path. Then the union of P1, P2 and u1u2 forms a closed walk W . If
u1, u2 ∈ A or u1, u2 ∈ B, then W is a closed odd walk. Thus G contains an odd cycle,
a contradiction. Thus for any edge u1u2, u1 and u2 are in different parts A or B.
Thus A and B are independent sets.

Theorem 1.6 (Eulerian Tour Condition, 1.8.1). A connected graph has an Eulerian
tour if and only if every vertex has even degree.

Proof. Assume that G is connected and has an Eulerian tour. Then by the definition
of the tour, there is an even number of edges incident to each vertex.

On the other hand, assume that G is a connected graph with all vertices of even degree.
Consider a walkW = v0, e0, . . . , vk with non-repeated edges and having largest possible
number of edges.

First we show that W has to be a closed walk. Otherwise, if v0 6= vk, we see that
v0 is incident to an odd number of edges in W . Since degree of v0 is even, there is a
vertex y such that the edge e = v0y is not in W , thus a walk y, e, v0, e0, . . . , vk obtained
by extending W with an edge e is longer than W and also has no repeated edges, a
contradiction. Thus v0 = vk.

Now we show that W contains all the edges of G. Otherwise, using connectivity of G,
we see that there is an edge e = xiz of G that is incident to a vertex vi of W and is
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not contained in W . Then the walk x, e, vi, ei, vi+1, . . . , vk, e0, v1, e1, . . . , vi is a longer
than W , a contradiction.

Therefore W is a closed walk that contains all the edges of the graph, i.e. W is an
Eulerian tour.

Lemma 7. Every tree on at least two vertices has a leaf.

Proof. If a tree T on at least two vertices does not have leaves then all vertices have
degree at least 2, so there is a cycle in T , a contradiction.

Lemma 8. A tree of order n ≥ 1 has exactly n− 1 edges.

Proof. We prove the statement by induction on n. When n = 1, there are no edges.
Assume that each tree on n = k vertices has k− 1 edges, k ≥ 1. Let’s prove that each
tree on k+1 vertices has k edges. Consider a tree T on k+1 vertices. Since k+1 ≥ 2, T
has a leaf, v. Let T ′ = T−{v}. We see that T ′ is connected because any u-w-path in T ,
for u 6= v and w 6= v, does not contain v. We see also that T ′ is acyclic, because deleting
vertices from an acyclic graph does not create new cycles. Thus T ′ is a tree on k
vertices. By induction |E(T ′)| = k−1. Thus |E(T )| = |E(T ′)|+1 = (k−1)+1 = k.

Lemma 9. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. Consider T , an acyclic spanning subgraph of G
with largest number of edges. If it is a tree, we are done. Otherwise, T has more than
one component. Consider vertices u and v from different components of G. Consider
a shortest u-v-path, P , in G. Then P has an edge e = xy with exactly one vertex x in
one of the components of T . Then T ∪{e} is acyclic. Indeed, if there were to be a cycle,
it would contain e, however there is no y-x-path in T ∪{e} except for xy. Thus T ∪{e}
is a spanning acyclic subgraph of G with more edges than T , a contradiction.

Lemma 10. A connected graph on n ≥ 1 vertices and n− 1 edges is a tree.

Proof. HW

Lemma 11. The vertices of every connected graph on n ≥ 2 vertices can be ordered
(v1, . . . , vn) so that for every i ∈ {1, . . . , n} the graph G

[
{v1, . . . , vi}

]
is connected.

Proof. Let G be a connected graph on n vertices. It contains a spanning tree T . Let
vn be a leaf of T , let vn−1 be a leaf of T − {vn}, vn−2 be a leaf of T − {vn, vn−1},
and so on, vk be a leaf in T − {vn, vn−1, . . . , vk+1}, k = 2, . . . , n. Since deleting
a leaf does not disconnect a tree, all the resulting graphs form spanning trees of
G
[
{v1, . . . , vi}

]
, i = 1, . . . , n. A graph H having a spanning tree or any connected

spanning subgraph H ′ is connected because a u-v-path in H ′ is a u-v-path in H. This
observation completes the proof.
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Proposition 1.7. For any graph G = (V,E) the following are equivalent:

(i) G is a tree, that is, G is connected and acyclic.

(ii) G is connected, but for any e ∈ E in G the graph G− e is not connected.

(iii) G is acyclic, but for any x, y ∈ V (G), xy 6∈ E(G) the graph G + xy has a
cycle.

(iv) G is connected and 1-degenerate.

(v) G is connected and |E| = |V | − 1.

(vi) G is acyclic and |E| = |V | − 1.

(vii) G is connected and every non-trivial subgraph of G has a vertex of degree
at most 1.

(viii) Any two vertices are joined by a unique path in G.

Proof. We give the proof of two implications. The rest is HW.

(i) ⇒ (iii):
Let G be a tree, let’s prove that G is acyclic, but for any xy /∈ E the graph
G + xy has a cycle. By the definition G is acyclic. Consider x, y ∈ V (G) such
that xy 6∈ E(G). Since G is connected, there is an x-y-path P in G. Then P ∪{e}
is a cycle for e = xy.

(iii) ⇒ (i):
Assume that G is acyclic, but for any xy 6∈ E(G) the graph G+ xy has a cycle.
Let’s prove that G is a tree. It is given that G is acyclic, so we only need to
prove that G is connected. Assume otherwise that there is no x-y-path in G for
some two vertices x and y. Then in particular xy 6∈ E(G). However, G ∪ {xy}
has a cycle C and this cycle must contain the edge xy. Thus there are two edge-
disjoint x-y-paths, one of which does not contain the edge xy and thus is a path
in G. So, there is an x-y-path in G, a contradiction.

Operations on graphs

Definition 1.8. Let G = (V,E) and G′ = (V ′, E′) be two graphs, U ⊆ V be a subset
of vertices of G and F ⊆

(
V
2

)
be a subset of pairs of vertices of G. Then we define

• G∪G′ := (V ∪V ′, E∪E′) G ∪G′, G ∩G′and G∩G′ := (V ∩V ′, E∩E′). Note that G,G′ ⊆ G∪G′
and G ∩G′ ⊆ G,G′. Sometimes, we also write G+G′ for G ∪G′.

• G − U := G[V \ U ], G − F := (V,E \ F ) G− U , G− F ,
G+ F

and G + F := (V,E ∪ F ). If U = {u}
or F = {e} then we simply write G− u, G− e and G+ e for G− U , G− F and
G+ F , respectively.
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• For an edge e = xy in G we define G ◦ e G ◦ eas the graph obtained from G by
identifying x and y and removing (if necessary) loops and multiple edges. We
say that G ◦ e arises from G by contracting the edge e contract.

• The complement of G complement, G, denoted by G or GC , is defined as the graph (V,
(
V
2

)
\E).

In particular, G+G is a complete graph, and G = (G+G)− E.

More graph parameters

Definition 1.9. Let G = (V,E) be any graph.

• The girth of G girth, g(G), denoted by g(G), is the length of a shortest cycle in G. If G is
acyclic, its girth is said to be ∞.

• The circumference circumferenceof G is the length of a longest cycle in G. If G is acyclic, its
circumference is said to be 0.

• The graph G is called Hamiltonian Hamiltonianif G has a spanning cycle, i.e., there is a cycle
in G that contains every vertex of G. In other words, G is Hamiltonian if and
only if its circumference is |V |.

• The graph G is called traceable traceableif G has a spanning path, i.e., there is a path in
G that contains every vertex of G.

• For two vertices u and v in G, the distance between u and v distance, d(u, v), denoted by d(u, v),
is the length of a shortest u-v-path in G. If no such path exists, d(u, v) is said
to be ∞.

• The diameter of G diameter,
diam(G)

, denoted by diam(G), is the maximum distance among all
pairs of vertices in G, i.e.

diam(G) = max
u,v∈V

d(u, v).

• The radius of G radius, rad(G), denoted by rad(G), is defined as

rad(G) = min
u∈V

max
v∈V

d(u, v).
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• If there is a vertex ordering v1, . . . , vn of G and a d ∈ N such that

|N(vi) ∩ {vi+1, . . . , vn}| ≤ d,

for all i ∈ [n− 1] then G is called d-degenerate d-degenerate. The minimum d for which G is
d-degenerate is called the degeneracy degeneracyof G.

We remark that the 1-degenerate graphs are precisely the forests.

• A proper k-edge colouring proper edge
colouring

is an assignment c′ : E → [k] of colours in [k] to edges
such that no two adjacent edges receive the same colour. The chromatic index
of G chromatic index,

χ′(G)
, or edge-chromatic number, is the minimal k such that G has a k-edge

colouring. It is denoted by χ′(G).

• A proper k-vertex colouring proper vertex
colouring

is an assignment c : V → [k] of colours in [k] to ver-
tices such that no two adjacent vertices receive the same colour. The chromatic
number of G chromatic

number, χ(G)
is the minimal k such that G has a k-vertex colouring. It is denoted

by χ(G).
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2 Matchings

Definition 2.1.

• A matching matchingis a 1-regular graph, i.e., a matching is a graph M so that E(M) is
a union of pairwise non-adjacent edges and 2|E(M)| = |V (M)|.

• A matching in G is a subgraph of G isomorphic to a matching. We denote the
size of the largest matching in G by ν(G) ν(G).

• A vertex cover in G vertex coveris a set of vertices U ⊆ V such that each edge in E is incident
to at least one vertex in U . We denote the size of the smallest vertex cover in G
by τ(G) τ(G).

• A k-factor of G k-factoris a k-regular spanning subgraph of G.

• A 1-factor of G is also called a perfect matching perfect matchingsince it is a matching of largest
possible size in a graph of order |V |. Clearly, G can only contain a perfect
matching if |V | is even.

Theorem 2.2 (Hall’s Marriage Theorem, 2.1.2). Let G be a bipartite graph with
partite sets A and B. Then G has a matching containing all vertices of A if and only
if |N(S)| ≥ |S| for all S ⊆ A.

Proof. If G has a matching M containing all vertices of A, then for any S ⊆ A, N(S)
in G is at least as large as N(S) in M , thus |N(S)| ≥ |S|.

We say that the Hall’s condition holds for a bipartite graph with parts A and B if
|N(S)| ≥ |S| for all S ⊆ A. We shall prove by induction on |A| that any bipartite
graph with parts A and B satisfying Hall’s condition has a matching containing all
vertices of A, in other words, saturating A.

When |A| = 1, there is at least one edge in G and thus a matching saturating A.
Assume that the statement is true for all graphs G satisfying Hall’s condition and
with |A| = k ≥ 1. Consider bipartite graph G with |A| = k + 1 and satisfying Hall’s
condition.

17

http://diestel-graph-theory.com/basic.html#53


Case 1: |N(S)| ≥ |S|+ 1 for any S ⊆ A, S 6= A.
Let G′ = G−{x, y}, for some edge xy, i.e., G′ is obtained from G by deleting vertices
x ∈ A and y ∈ B, G′ has parts A′ = A − {x} and B′ = B − {y}. For any S ⊆ A′,
|NG′(S′)| ≥ |NG(S)| − 1 ≥ |S|+ 1− 1 = |S|. Thus G′ satisfies Hall’s condition and by
induction has a matching M ′ saturating A′. Then M = M ′ ∪{xy} is a matching in G
saturating A.

Case 2: |N(S1)| = |S1| for some S1 ⊆ A, S1 6= A.
Let A′ = S1, B′ = N(A′), G′ = G[A′ ∪ B′]. Since |A′| < |A|, and G′ satisfies
Hall’s condition, G′ has a matching M ′ saturating A′ by induction. Now, consider
A′′ = A − A′, B′′ = B − B′, G′′ = G[A′′ ∪ B′′]. We claim that G′′ also satisfies
Hall’s condition. Assume not, and there is S ⊆ A′′ such that |NG′′(S)| < |S|. Then
|NG(S∪A′)| = |B′∪NG′′(S)| = |B′|+ |NG′′(S)| < |A′|+ |S| = |A′∪S|, a contradiction
to Hall’s condition. Thus G′′ does satisfy Hall’s condition and there is a matching M ′′

saturating A′′ in G′′. Thus M ′ ∪M ′′ is a matching saturating A in G.

Corollary 12. Let G be a bipartite graph with partite sets A and B such that
|N(S)| ≥ |S| − d holds for all S ⊆ A, and for a fixed positive integer d. Then G
contains a matching of size at least |A| − d.

Proof. Let G = (A∪B,E), let G′ = (A∪B′∪B,E∪{{b′, a}, b′ ∈ B′, a ∈ A}), such that
B′ ∩B = ∅ and |B′| = d. Then for any S ⊆ A, |N ′G(S)| ≥ |NG(S)|+ d ≥ |S| − d+ d =
|S|. Thus G′ satisfies Hall’s condition and thus has a matching M saturating A, so
|E(M)| = |A|. Consider M ′ = M [A ∪B], then |M ′| ≥ |M | − d = |A| − d.

Corollary 13. If G is a regular bipartite graph, it has a perfect matching.

Proof. Let k ∈ N and let G be a k-regular bipartite graph with parts A and B. Then
|E(G)| = k|A| = k|B|, and thus |A| = |B|. Consider S ⊆ A, let e be the number of
edges between S and N(S). On one hand, e = |S|k, on the other hand e ≤ |N(S)|k.
Thus |N(S)| ≥ |S| and by Hall’s theorem there is a matching saturating A. Since
|A| = |B|, it is a perfect matching.
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Corollary 14. A k-regular bipartite graph has a proper k-edge-coloring.

Theorem 2.3 (Kőnig’s Theorem). Let G be bipartite. Then the size of a largest
matching is the same as the size of a smallest vertex cover.

Proof. Let c be the vertex-cover number of G and m be the size of a largest matching
of G. Since a vertex cover should contain at least one vertex from each matching edge,
c ≥ m.

Now, we shall prove that c ≤ m. Let M be a largest matching in G, we need to show
that c ≤ |M |. Let A and B be the partite sets of G. An alternating path is a path
that starts with a vertex in A not incident to an edge of M , and alternates between
edges not in M and edges in M . Note that if an alternating path must end in a vertex
saturated by M , otherwise one can find a larger matching.

Let

U ′ = {b : ab ∈ E(M) for some a ∈ A and some alternating path ends in b},

U = U ′ ∪ {a : ab ∈ E(M), b 6∈ U ′}.

We see that |U | = m. We shall show that U is a vertex cover, i.e. that every edge
of G contains a vertex from U . Indeed, if ab ∈ E(M), then either a or b is in U . If
ab 6∈ E(M), we consider the following cases:

Case 0: a ∈ U . We are done.
Case 1: a is not incident to M . Then ab is an alternating path. If b is also not
incident to M then M ∪ {ab} is a larger matching, a contradiction. Thus b is incident
to M and then b ∈ U .
Case 2: a is incident to M . Then ab′ ∈ E(M) for some b′. Since a 6∈ U , we have that
b′ ∈ U , thus there is an alternating path P ending in b′. If P contains b, then b ∈ U ,
otherwise Pb′ab is an alternating path ending in b, so b ∈ U .

Assume that each vertex in a complete bipartite graph G = (A∪B,E) gives an ordering
or a ranking to its neighbors, and write y <x y

′ if a vertex x ”likes” y′ more than y.
A matching M in G is called stable matching if for any edge e 6∈ M there is an edge
f ∈ M such that f ∩ e = x, f = xy, e = xy′ and y >x y

′. If we assume for simplicity
that A is a set of women and B is a set of men, then a stable matching is thought of
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as a set of “stable” marriages. I.e., for any ”marriage” from M , one of the spouses
“has no reason to leave”.

Gale and Shapley proved in 1962 that there is always a stable matching in a bipar-
tite graph equipped with a ranking of the neighbors for each vertex. They gave an
algorithm to find one.

The algorithm is as follows: Initially, no one is engaged. During each round, each
man who is not engaged proposes to highest on his list woman who did not reject him
yet; for a woman receiving multiple proposals, she says ”maybe” to the highest ranked
offer and rejects other proposals, the man to whom she said ”maybe” is now engaged
to her, the rejected men are not engaged anymore. The rounds repeat until everybody
is engaged.

“ Everyone gets married”:
At the end, there cannot be a man and a woman both unengaged, as he must have
proposed to her at some point (since a man will eventually propose to everyone, if
necessary) and, being proposed to, she would necessarily be engaged (to someone)
thereafter.

“The marriages are stable”:
Let Alice and Bob both be engaged, but not to each other. Upon completion of the
algorithm, it is not possible for both Alice and Bob to prefer each other over their
current partners. If Bob prefers Alice to his current partner, he must have proposed
to Alice before he proposed to his current partner. If Alice accepted his proposal, yet
is not married to him at the end, she must have dumped him for someone she likes
more, and therefore doesn’t like Bob more than her current partner. If Alice rejected
his proposal, she was already with someone she liked more than Bob. ” Wikipedia
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For any graph H define q(H) to be the number of odd components of H, i.e., the
number of connected components of H consisting of an odd number of vertices.

Theorem 2.4 (Tutte’s Theorem, 2.2.1). A graph G has a perfect matching if and
only if q(G− S) ≤ |S| for all S ⊆ V .

Proof. Assume first that G has a perfect matching M . Consider a set S of vertices
and an odd component G′ of G − S. We see that there is at least one vertex in G′

that is incident to an edge of M that has another endpoint not in G′. This endpoint
must be in S. Thus |S| is at least as large as the number of odd components.

Now, assume that q(G − S) ≤ |S| for all S ⊆ V . Assume that G has no perfect
matching and |V (G)| = n. Note that |V (G)| is even (it follows from the assumption
q(G − S) ≤ |S| applied to S = ∅). Let G′ be constructed from G by adding missing
edges as long as no perfect matching appears. Let S be a set of vertices of degree
n− 1. Note that it could be empty.

Claim 1. Each component of G′ − S is complete. Assume not, there is a component
F containing vertices a, b, c such that ab, bc ∈ E(G′) and ac 6∈ E(G′). Since b 6∈ S,
deg(b) < n−1, so there is d ∈ V (G), d 6∈ {a, b, c}, such that bd 6∈ E(G′). By maximality
of G′, G′ ∪ ac has a perfect matching M1 and G′ ∪ bd has a perfect matching M2. Let
H be a graph with edge set E(M1)∆E(M2).
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Then H is a vertex-disjoint union of even cycles, alternating edges from M1 and M2.
We have that ac, bd ∈ E(H). If ac and bd are in the same cycle C of H, we see that
C ∪{ab, cb} has a perfect matching MC not containing either ac or bd. Build a perfect
matching M of G′ from MC , a perfect matchings of other components of H, and the
edges of M1 ∩M2.

If ac and bd belong to different cycles of H, again build a perfect matching M of G′

not containing ac and not containing bd. We see that M is a perfect matching of G′,
contradicting the assumption that G′ has no perfect matching. This proves Claim 1.

Claim 2. q(G′ − S) > |S|.
If q(G′ − S) ≤ |S|, build a perfect matching of G′ by matching a single vertex in each
odd component of G′−S to S, matching the remaining vertices in each component of
G′ − S to the vertices in respective components, and matching the remaining vertices
of S to the vertices of S. Since V (G′) is even, we can construct a perfect matching in
this way, a contradiction. This proves Claim 2.
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Finally, observe that since G′ is obtained from G by adding edges q(G−S) ≥ q(G′−S).
Thus q(G− S) > |S|, a contradiction.

Definition 2.5. Let G = (V,E) be any graph.

• For all functions f : V → N ∪ {0} an f -factor of G f -factoris a spanning subgraph H
of G such that degH(v) = f(v) for all v ∈ V .

• Let f : V → N ∪ {0} be a function with f(v) ≤ deg(v) for all v ∈ V . We can
construct the auxiliary graph T (G, f) T (G, f)by replacing each vertex v with vertex sets
A(v)∪B(v) such that |A(v)| = deg(v) and |B(v)| = deg(v)− f(v). For adjacent
vertices u and v we place an edge between A(u) and A(v) such that the edges
between the A-sets are independent. We also insert a complete bipartite graph
between A(v) and B(v) for each vertex v.

• Let H be a graph. An H-factor of G H-factoris a spanning subgraph of G that is a
vertex-disjoint union of copies of H, i.e., a set of disjoint copies of H in G whose
vertex sets form a partition of V .
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Lemma 15. Let f : V → N ∪ {0} be a function with f(v) ≤ deg(v) for all v ∈ V .
Then G has an f -factor if and only if T (G, f) has a 1-factor.

Proof. Assume first that G has an f -factor. For each edge uv of the f -factor, consider
an edge between A(u) and A(v) such that respective edges form a matching, M . We
see that exactly f(v) vertices of A(v) are saturated by M . Build a matching between
the unsaturated by M vertices of A(v) and B(v), for each v ∈ V (G).
Assume that T (G, f) has a perfect matching M . Delete all B(v)’s, v ∈ V (G), and
contract A(v) into a single vertex v. After such an operation applied to M , each vertex
v has degree f(v) and the graph is clearly a subgraph of G.

Theorem 16 (Hajnal and Szemerédi 1970). If G satisfies δ(G) ≥ (1 − 1/k)n, where
k is a divisor of n, then G has a Kk-factor.

Theorem 17 (Alon and Yuster 1995). Let H be a graph. If G satisfies

δ(G) ≥
(

1− 1

χ(H)

)
n,

then G contains at least
(
1− o(1)

)
· n/|V (H)| vertex-disjoint copies of H.

Theorem 18 (Komlós, Sárközy, and Szemerédi 2001). For any graph H with χ(H) =
k, |H| = r, there are constants c, n0 such that for any n ≥ n0 such that n is divisible
by r and δ(G) ≥ (1− 1/k)n+ c, G contains an H-factor.

Theorem 19 (Wang 2010). If |G| = 4m and δ(G) ≥ n/2, then G has a C4-factor.

Definition. For a graph H, define the critical chromatic number of H critical chromatic
number, χcr(H)

as

χcr(H) =
(χ(H)− 1)|H|
|H| − σ(H)

,

where σ(H) denotes the minimum size of the smallest color class in a coloring of H
with χ(H) colors.

Note that for any graph H, χcr(H) always satisfies

χ(H)− 1 ≤ χcr(H) ≤ χ(H)

and χcr(H) = χ(H) if and only if for every coloring of H with χ(H) colors, all of the
color classes have equal size.

Theorem 20 (Kühn and Osthus, 2009). Let H be a graph and n ∈ N so that n is
divisible by |H| and define

δ(n,H) = min{k : any G with |G| = n, δ(G) ≥ k has an H-factor}.

Then there exists a constant C = C(H) so that(
1− 1

r

)
n− 1 ≤ δ(n,H) ≤

(
1− 1

r

)
n+ C,

where r ∈ {χ(H), χcr(H)}.
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3 Connectivity

Definition 3.1.

• For a natural number k ≥ 1, a graph G is called k-connected k-connectedif |V (G)| ≥ k + 1
and for any set U of k − 1 vertices in G the graph G − U is connected. In
particular, Kn is (n− 1)-connected.

• The maximum k for which G is k-connected is called the connectivity of G connectivity, κ(G),
denoted by κ(G). For example, κ(Cn) = 2 and κ(Kn,m) = min{m,n}.

• For a natural number k ≥ 1, a graph G is called k-linked k-linkedif |G| ≥ 2k and for
any 2k distinct vertices s1, s2, . . . , sk, t1, t2, . . . , tk there are vertex-disjoint si-ti-
paths, i = 1, . . . , k.

• For a graph G = (V,E) a set X ⊆ V ∪ E of vertices and edges of G is called
a cut set cut setof G if G − X has more connected components than G. If a cut set
consists of a single vertex v, then v is called a cut vertex cut vertexof G; if it consists of a
single edge e, then e is called a cut edge or bridge cut edge, bridgeof G.

• For a natural number ` ≥ 1, a graph G is called `-edge-connected `-edge-connectedif G is non-
trivial and for any set F ⊆ E of fewer than ` edges in G the graph G − F is
connected.

• The edge-connectivity of G edge-connectivity,
κ′(G)

is the maximum ` such that G is `-edge-connected.
It is denoted by κ′(G) .

G non-trivial tree ⇒ κ′(G) = 1, G cycle ⇒ κ′(G) = 2.

Clearly, for every k, ` ≥ 2, if a graph is k-connected, k-linked or `-edge-connected,
then it is also (k− 1)-connected, (k− 1)-linked or (`− 1)-edge-connected, respectively.
Moreover, for a non-trivial graph is it equivalent to be 1-connected, 1-linked, 1-edge-
connected, or connected.
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Lemma 3.2. For any connected, non-trivial graph G we have

κ(G) ≤ κ′(G) ≤ δ(G).

Proof. Observe first that for a complete graph G = Kn, κ(G) = κ′(G) = δ(G) = n−1.
So, we can assume that G is not complete.

To show that κ′(G) ≤ δ(G), observe that G can be disconnected by removing the edges
incident to a vertex v of minimum degree. To show that κ(G) ≤ κ′(G), consider a
smallest separating set of edges, F , of size κ′(G). We shall show that κ(G) ≤ |F |.
Case 1. There is a vertex v not incident to F . Then v is in the component G′ of
G − F . Then the vertices of G′ incident to F separate G, there are at most |F | of
them.

Case 2. Every vertex is incident to F . Let v be a vertex of degree less than |G| − 1.
Such exists since G is not complete. Let G′ be the component of G − F containing
v. Then U = {u : u ∈ N(v), uv 6∈ F} ⊆ V (G′). For each u ∈ U , u is incident to F ,
moreover distinct u’s from U are incident to distinct edges from F . So, |N(v)| ≤ |F |.
We see that N(v) is a separating set, so κ(G) ≤ |F |.

Example. A graph G with κ(G), κ′(G)� δ(G).

Definition. For a subset X of vertices and edges of G and two vertex sets A,B in G
we say that X separates A and B separateif each A-B-path contains an element of X.
Note that if X separates A and B, then necessarily A ∩B ⊆ X.

Some sets separating A and B: {e1, e4, e5}, {e1, u2}, {u1, u3, v3}
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Theorem 3.3 (Menger’s Theorem, 3.3.1). For any graph G and any two vertex sets
A,B ⊆ V (G), the smallest number of vertices separating A and B is equal to the
largest number of disjoint A-B-paths.

Proof. Let s(A,B) be the smallest number of vertices separating A and B, let p(A,B)
be the largest number of disjoint A-B-paths. It is clear that s(A,B) ≥ p(A,B). To
show that s(A,B) ≤ p(A,B), we shall prove a stronger statement:

If P is any set of less than s(A,B) disjoint A-B-paths in G, then there is a set Q of
|P|+ 1 disjoint A-B-paths whose set of endpoints includes the set of endpoints of P.
We shall fix A and G, vary B, run induction on |G−B|.

Basis: |G−B| = |A−B|, i.e., there are no vertices outside of A∪B. The result follows
from Kőnig’s theorem applied to the bipartite subgraph of G with parts A\B and B\A.

Step: Assume that |G−B| = q and for all B with |G−B| < q the statement holds.

Let V (P) denote the set of all vertices from P and let R be an A-B-path that does not
contain any vertex from B ∩ V (P). Such a path exists, otherwise the set of endpoints
of P in B would separate A and B.

Case 1 R ∩ V (P) = ∅. Then let Q = P ∪ {R}.
Case 2 R∩V (P) 6= ∅. Let x ∈ V (P)∩V (R) such that x is the last such vertex on R.
Let P ∈ P such that x ∈ V (P ). Let B′ = B ∪ V (xP ∪ xR), let P ′ = P \ {P} ∪ {Px}.
Since |P ′| = |P | < s(A,B) ≤ s(A,B′), by induction there is a set Q′ of |P ′|+1 disjoint
A-B′-paths whose set of endpoints contains the set of endpoints of P ′. Thus there is
Q ∈ Q′, with endpoint x and there is Q′ ∈ Q′ with endpoint y, where y ∈ B′ and y is
not an endpoint of a path in Q′.
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Case 1. y ∈ B \ V (P), then let Q = Q′ \ {Q} ∪ {Q ∪ xP}.
Case 2. y ∈ xP . Let Q = (Q′ \ {Q,Q′}) ∪ {Q′ ∪ yP,Q ∪ xR}.
Case 3. y ∈ xR. Let Q = (Q′ \ {Q,Q′}) ∪ {Q′ ∪ yR,Q ∪ xP}.

We see that Q is a desired set of A-B paths.

Corollary 21. If a, b are vertices of G, {a, b} /∈ E(G), then

min #vertices from V (G) \ {a, b} separating a and b = max #independent a-b-paths
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Theorem 3.4 (Global Version of Menger’s Theorem, 3.3.6). A graph G is k-connected
if and only if for any two vertices a, b in G there exist k independent a-b-paths.

Proof. Assume that G is k-connected. Then |G| > k and for any two vertices one
needs at least k vertices to separate them. Assume that there are at most (k − 1)
independent a-b-paths for some distinct vertices a and b.

If a is not adjacent to b, consider A = N [a] and B = N [b]. Any A-B-path starts in
N(a) and ends in N(b). Thus a set of independent a-b-paths corresponds to a set of
disjoint A-B-paths bijectively. Therefore we have at most (k − 1) disjoint A-B-paths
and thus by Menger’s theorem there is a set of at most k−1 vertices separating A and
B. This set separates a and b. A contradiction.

If a and b are adjacent, consider a graph G′ obtained from G by deleting the edge
ab. Then there are at most k − 2 independent a-b-paths in G′. As before, we apply
Menger’s theorem to N [a] and N [b] in G′ and see that there is a set X of at most
k− 2 vertices separating a and b in G′. Since |G| > k, there is a vertex v 6∈ X ∪{a, b}.
Thus X separates v from either a or b, say from a. Then X ∪ {b} separates v from
a in G. Hence the set X ∪ {b} is a set of k − 1 vertices separating a and v in G, a
contradiction.

Now, assume that there are at least k independent paths between a and b in G, for
any two vertices a and b. Thus |G| > k and the deletion of less than k vertices does
not disconnect G.

Note that Menger’s Theorem implies that if G is k-linked, then G is k-connected.

Theorem 22 (Thomas and Wollan, 2005). If a graph G is 10k-connected, then it is
k-linked.

Definition. For a graph G = (V,E) the line graph L(G) line graph L(G)of G is the graph L(G) =
(E,E′), where

E′ =

{
{e1, e2} ∈

(
E

2

)
: e1 adjacent to e2 in G

}
.

A graph and its line graph.
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Theorem 23 (Beineke, 1970). A graph L is a line graph of some graph if and only if
it does not contain any of the graphs from Figure 1 as induced subgraphs.

Figure 1: Forbidden induced subgraphs of a line graph.

Corollary 24. If a, b are vertices of G, then

min #edges separating a and b = max #edge-disjoint a-b-paths

Moreover, a graph is k-edge-connected if and only if there are k edge-disjoint paths
between any two vertices.
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Definition 3.5. Given a graph H, we call a path P an H-path H-pathif P is non-trivial (has
length at least one) and meets H exactly in its ends. In particular, the edge of any
H-path of length 1 is never an edge of H. We sometimes refer to such a path P as an
ear of the graph H ∪ P .

An ear-decomposition ear-decompositionof a graph G is a sequence G0 ⊆ G1 ⊆ · · · ⊆ Gk of graphs, such
that

• G0 is a cycle,

• for each i = 1, . . . , k the graph Gi arises from Gi−1 by adding a Gi−1-path Pi,
i.e., Pi is an ear of Gi, and

• Gk = G.

Theorem 25 (Ear-decomposition). A graph G is 2-connected if and only if it has an
ear decomposition starting from any cycle of G.

Proof. Assume first that G has a ear-decomposition starting from a cycle C, i.e.,
C = G0 ⊆ G1 ⊆ · · · ⊆ Gk = G, where Gi is obtained from Gi−1 by adding a ear.
We shall prove by induction on i that Gi is 2-connected. Clearly G0 is 2-connected.
Assume that Gi is 2-connected. We have that Gi+1 is obtained from Gi by adding a
ear Q. Then Gi+1 is connected. In addition, if Gi+1 contains a cut-vertex, it must be
on a ear Q. But deleting a vertex from a ear does not disconnect Gi+1 since a ear is
contained in a cycle.

Now assume that G is 2-connected and C is a cycle in G. Let H be the largest subgraph
of G obtained by ear decomposition starting with C. We see that H is an induced
subgraph of G, otherwise an edge of G with two vertices in V (H) is an ear that could
have been added to H. Assume that H 6= G. Since G is connected, there is an edge
e = uv with u ∈ V (H) and v /∈ V (H). Since G− u is connected, consider a v-w-path
P in G− u for some vertex w ∈ V (H)− u. Let w′ be the first vertex from V (H)− u
on this path. Then Pw′ ∪ uv is an ear of H, a contradiction to minimality of H.

Lemma 26. If G is 3-connected with G 6= K4, then there exists an edge e of G such
that G ◦ e is also 3-connected.
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Proof. Assume not, i.e., for each edge e = xy, G ◦ e is not 3-connected, i.e., has a
2-cut. This 2-cut must contain the vertex into which x and y were contracted, and
some other vertex, which we denote by f(x, y). We see that in G there is a 3-cut,
{x, y, f(x, y)} for each edge xy. Among all edges of G choose xy to be the one so that
deleting x, y, f(x, y) from G creates a smallest component. Let this component be
C. Since G has no 2-cut, no proper subset of {x, y, f(x, y)} is a cut, so in particular,
f(x, y) has a neighbor v in C. Consider a cut S = {f(x, y), v, f(f(x, y), v)}. Note that
since xy ∈ E(G), x and y are in the same component of G−S. Let D be a component
of G− S that contains neither x nor y. As before, we see that v has neighbors in D.
However, all neighbors of v are in C ∪{x, y, f(x, y)}. Thus D ⊆ C−{v} implying that
|D| < |C|. A contradiction to minimality of C.

Theorem 3.6 (Tutte, 3.2.3). A graph G is 3-connected if and only if there exists a
sequence of graphs G0, G1, . . . , Gk, such that

• G0 = K4,

• for each i = 1, . . . , k the graph Gi has two adjacent vertices x′, x′′ of degree at
least 3, so that Gi−1 = Gi ◦ x′x′′, and

• Gk = G.

Proof. If G is 3-connected, such a sequence exists by Lemma 26. To see that the degree
condition is satisfied, recall that δ(H) ≥ 3 for any 3-connected graph H. Note that
with each contraction, the number of vertices decrease by 1 and until we have at least
5 vertices, we can apply Lemma 26 and contract one more edge. Thus we stop at a
graph G0 which has 4 vertices and δ(G0) ≥ 3 from which G0

∼= K4 follows.
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To see the other direction, we shall consider a sequence of graphs satisfying the given
conditions and show that each graph in the sequence is 3-connected. Assume that Gi
is 3-connected, Gi+1 is not, and Gi = Gi+1 ◦ xy, for an edge xy of Gi+1 such that
d(x), d(y) ≥ 3. Then Gi+1 has a cut-set S with at most two vertices.
Case 1. x, y ∈ S.
Then Gi has a cut vertex, a contradiction.

Case 2. x ∈ S, y 6∈ S, y is not the only vertex of its component in Gi+1 − S.
Then Gi has a cut set of size at most 2, a contradiction.

Case 3. x ∈ S, y 6∈ S, y is the only vertex of its component in Gi+1 − S.
Then d(y) ≤ 2, a contradiction to the fact that d(y) ≥ 3.

Case 4. x, y 6∈ S.
Then x and y are in the same component of Gi+1 − S. So, S is a cutset of Gi, a
contradiction.

Note that Theorem 3.6 gives a way to generate all 3-connected graphs by starting
with K4 and creating a sequence of graphs by ”uncontracting” a vertex such that the
degrees of new vertices at at least 3 each.
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Theorem 27 (Mader). Every graph G = (V,E) of average degree at least 4k has a
k-connected subgraph.

Proof. For k ∈ {0, 1} the theorem holds trivially. Let k ≥ 2. We shall prove a stronger
statement (?) by induction on n, n = |G|:

(?) |G| ≥ 2k−1 and ||G|| ≥ (2k−3)(n−k+1)+1, then G has a k−connected subgraph.

Note that if the assumptions of the theorem hold, i.e., the average degree of G is at
least 4k, then n is at least the maximum degree that is at least the average degree, so
n ≥ 4k and ||G|| = n4k/2 = 2kn ≥ (2k − 3)(n− k + 1) + 1.

Basis: n = 2k − 1. Then k = (n + 1)/2, and ||G|| ≥ (2k − 3)(n − k + 1) + 1 =
(n− 2)(n+ 1)/2 + 1 = n(n− 1)/2. Thus G is a complete graph on 2k − 1 vertices, so
it is k-connected.

Step: Let n ≥ 2k and assume that (?) holds for smaller values of n.

If v is a vertex of degree at most 2k − 3, apply induction to G − v that has n − 1
vertices and at least (2k− 3)(n− k+ 1) + 1− (2k− 3) = (2k− 3)((n− 1)− k+ 1) + 1
edges. By induction G− v has a k-connected subgraph.
Thus we can assume that each vertex has degree at least 2k−2. If G is not k-connected,
then there is a separating set X of vertices, |X| < k. Let V1 be a vertex set of one
connected component of G−X and V2 be vertex sets of all other components of G−X.
Let Gi = G[Vi ∪X]. Each vertex in each Vi has at least 2k − 2 neighbours in Gi, so
|G1|, |G2| ≥ 2k − 1. Note that |Gi| < n, i = 1, 2.
If for some i ∈ {1, 2} ||Gi|| ≥ (2k − 3)(|Gi| − k + 1) + 1, then Gi has a k-connected
subgraph by induction.
Thus we can assume that ||Gi|| ≤ (2k − 3)(|Gi| − k + 1), i = 1, 2. Since |V (G1) ∩
V (G2)| ≤ k − 1, we have that

||G|| ≤ (2k − 3)(|G1|+ |G2| − 2k + 2) ≤ (2k − 3)(n− k + 1),

a contradiction. This proves (?) and the theorem.
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Definition 3.7. Let G be a graph. A maximal connected subgraph of G without a
cut vertex is called a block blockof G. In particular, the blocks of G are exactly the bridges
and the maximal 2-connected subgraphs of G.

The block-cut-vertex graph or block graph block-cut-vertex
graph

of G is a bipartite graph H whose partite sets
are the blocks of G and the cut vertices of G, respectively. There is an edge between a
block B and a cut vertex a if and only if a ∈ B, i.e., the block contains the cut vertex.

The leaves of this graph are called leaf blocks leaf block.

Theorem 28. The block-cut-vertex graph of a connected graph is a tree.
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4 Planar graphs

This section deals with graph drawings. We restrict ourselves to graph drawings in
the plane R2. It is also feasible to consider graph drawings in other topological spaces,
such as the torus.

Definition 4.1.

• The straight line segment straight line
segment

between p ∈ R2 and q ∈ R2 is the set {p + λ(q − p) :
0 ≤ λ ≤ 1}.

• A homeomorphism homeomorphismis a continuous function that has a continuous inverse func-
tion.

• Two sets A ⊆ R2 and B ⊆ R2 are said to be homeomorphic homeomorphicif there is a homeo-
morphism f : A→ B.

• A polygon polygonis a union of finitely many line segments that is homeomorphic to the
circle S1 := {x ∈ R2 : ‖x‖ = 1}.

• An arc arcis a subset of R2 which is the union of finitely many straight line segments
and is homeomorphic to the closed unit interval [0, 1]. The images of 0 and 1
under such a homeomorphism are the endpoints of the arc endpoint of arc. If P is an arc with
endpoints p and q, then P links them and runs between them. The set P \ {p, q}
is the interior of P interior of arc, denoted by P̊ .

• Let O ⊆ R2 be an open set. Being linked by an arc in O is an equivalence relation
on O. The corresponding equivalence classes are the regions of O region. A closed set
X ⊆ R2 is said to separate separateO if O \X has more regions than O.

The frontier frontierof a set X ⊆ R2 is the set Y of all points y ∈ R2 such that every
neighbourhood of y meets both X and R2 \ X. Note that if X is closed, its
frontier lies in X, while if X is open, its frontier lies in R2 \X.

• A plane graph plane graphis a pair (V,E) of sets with the following properties (the elements
of V are again called vertices, those in E edges):

1. V ⊆ R2;

2. every e ∈ E is an arc between two vertices;

3. different edges have different sets of endpoints;

4. the interior of an edge contains no vertex and no point of any other edge.

A plane graph (V,E) defines a graph G on V in a natural way. As long as no
confusion can arise, we shall use the name G of this abstract graph also for the
plane graph (V,E), or for the point set V ∪

⋃
E.
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• For any plane graph G, the set R2 \G is open; its regions are the faces of G faces, F (G).

• The face of G corresponding to the unbounded region is the outer face outer faceof G; the
other faces are its inner faces inner face. The set of all faces is denoted by F (G).

• The subgraph of G whose point set is the frontier of a face f is said to bound f
and is called its boundary boundary of f ,

G[f ]
; we denote it by G[f ].

• Let G be a plane graph. If one cannot add an edge to form a plane graph G′ ) G
with V (G′) = V (G), then G is called maximally plane maximally plane. If every face in F (G)
(including the outer face) is bounded by a triangle in G, then G is called a plane
triangulation triangulation.

• A planar embedding planar embeddingof an abstract graph G = (V,E) is a bijective mapping
f : V → V ′, where G′ = (V ′, E′) is a plane graph and uv ∈ E(G), then there is
an edge in E′ with endpoints f(u) and f(v), We say that G′ is a drawing of G.
We shall not distinguish notational between the vertices of G and G′. A graph
G = (V,E) is planar planar graphif it has a planar embedding.

• A graph G = (V,E) is outerplanar outerplanar graphif it has a plane embedding such that the
boundary of the outer face contains all of the vertices V .

Lemma 29 (Jordan Curve Theorem for Polygons, 4.1.1). Let P ⊆ R2 be a polygon.
Then R2 \ P has exactly two regions. One of the regions is unbounded, the other is
bounded. Each of the two regions has P as frontier.

Lemma 30. Let P1, P2 and P3 be internally disjoint arcs that have the same end-
points. Then

1. R2 \ (P1 ∪ P2 ∪ P3) has exactly three regions with boundaries P1 ∪ P2, P1 ∪ P3

and P2 ∪ P3, respectively.

2. Let P be an arc from the interior of P1 to the interior of P3 whose interior lies
in the region of R2 \ (P1 ∪ P3) containing the interior of P2. Then P contains a
points of P2.

Lemma 31. Let G be a plane graph and e be an edge of G. Then the following hold.
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• The frontier X of a face of G either contains e or is disjoint from the interior
of e.

• If e is on a cycle in G, then e is on the frontier of exactly two faces.

• If e is on no cycle in G, then e is on the frontier of exactly one face.

Theorem 32 (Plane triangulation). A graph of order at least 3 is maximally plane if
and only if it is a plane triangulation.

Proof. If G is a plane triangulation, then each face is bounded by a triangle. If an edge
is added to G so that the resulting graph is plane, the interior of the the edge must
be in some face f of G. The endpoints of the added edge must be two of the three
vertices on frontier of f . However, these vertices already are endpoints of an edge of G,
a contradiction. Thus no edge could be added to G so that the graph remains plane.

Now assume that G is maximally plane, i.e., that adding any edge violates some
property of a plane graph. Let f be a face and H = G[f ]. Then we see that H is a
complete graph, otherwise we could add a new edge with interior in f . If H has at
least 4 vertices, v1, v2, v3, v4, . . ., then we see that vi-vj-paths, i, j ∈ [4] can not all be
pairwise disjoint. If H has at most 2 vertices, then f is a face having at most one edge
on its boundary, thus f = R2 −G and one can add another edge to G. Therefore, we
see that H is a complete graph on 3 vertices.

Theorem 4.2 (Euler’s Formula, 4.2.9). Let G be a connected plane graph with n ver-
tices, m edges and ` faces. Then

n−m+ ` = 2.

Proof. We apply induction on m. A connected graph has at least n − 1 edges. If
m = n−1, G is a tree. Then ` = 1 and n−m+` = n− (n−1)+1 = 2. Let m ≥ n and
assume that the assertion holds for smaller values of m. Then there is an edge e on a
cycle. Let G′ = G− e. Then e is on the boundary of exactly two faces f1 and f2. One
can show that F (G′) = F (G)−{f1, f2}∪ {f ′}, where f ′ = f1 ∪ f2 \ e. Let n′,m′, `′ be
the number of vertices, edges, and faces of G′, respectively. Then we see that n = n′,
m = m′ + 1, ` = `′ + 1. So, n−m+ ` = n− (m′ + 1) + (`′ + 1) = n′ −m′ + `′ = 2 by
induction applied to G′.

Corollary 33. A plane graph with n ≥ 3 vertices has at most 3n − 6 edges. Every
plane triangulation has exactly 3n− 6 edges.

Proof. We shall prove the second statement. Let m denote the number of edges of G
and ` denote the number of faces. Each face of a plane triangulation G has exactly
three edges on its boundary, every edge is on the boundary of exactly two faces, so
|{(f, e) : f ∈ F (G), e ∈ E(G), e ⊆ ∂f}| = 3` = 2m. Thus ` = 2m/3. Plugging this
into Euler’s formula, we obtain 2 = n − m + ` = n − m + 2m/3 = n − m/3. Thus
m = 3n− 6.
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Corollary 34. A triangle-free plane graph with n ≥ 3 vertices has at most 2n − 4
edges.

Proof. HW

Theorem 35 (Fáry’s Theorem). Every planar graph has a plane embedding with
straight line segments as edges.

Lemma 36 (Pick’s Formula). Let P be a polygon with corners on the grid Z2, let A
be its area, I be the number of grid points strictly inside of P and B be the number
of grid points on the boundary of P . Then A = I +B/2− 1.

Definition 4.3. Let G and X be two graphs.

• We say that X is a minor of G minor, X 4 G, denoted by X 4 G, if X can be obtained from G
by successive vertex deletions, edge deletions and edge contractions.

• We write G = MX G = MXif and only if the vertices G can be partitioned into sets
V (G) = V1∪̇ · · · ∪̇V|X| such that G[Vi] is connected and for every edge vivj ∈
E(X), i, j ∈ [|X|], there is an edge uv ∈ E(G) incident to the corresponding sets
Vi, Vj , i.e., u ∈ Vi and v ∈ Vj .
Note that X 4 G if and only if MX ⊆ G.

• The graph G is a single-edge subdivision of X if V (G) = V (X)∪{v} and E(G) =
E(x)−xy+xv+vy for xy ∈ E(X) and v 6∈ V (X). We say that G is a subdivision
of X subdivisionif it can be obtained from X by a series of single-edge subdivisions.

• We write G = TX G = TX, if G is a subdivision of X.

• We say that X is a topological minor of G topological minor, if a subgraph of G is a subdivision
of X. Note that X is a topological minor of G if and only if TX ⊆ G.
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Theorem 4.4 (Kuratowski’s Theorem, 4.4.6). The following statements are equivalent
for graphs G:

i) G is planar;

ii) G does not have K5 or K3,3 as minors;

iii) G does not have K5 or K3,3 as topological minors.

Lemmas for the proof of Kuratowski’s theorem

Lemma 37. A graph G contains K5 or K3,3 as a minor iff G contains K5 or K3,3 as
a topological minor.

Proof. Assume that TK5 ⊆ G or TK3,3 ⊆ G. Since any topological minor is a minor,
we have that MK5 ⊆ G or MK3,3 ⊆ G. (Note that if we look at TH and MH as
classes of graphs, TH ⊆MH).

Assume that MK3,3 ⊆ G. Let H be a smallest (by number of vertices and edges)
subgraph of G, such that H = MK3,3. There are exactly 9 edges between the branch
sets of H, corresponding to 9 edges of K3,3. Let Hi be a subgraph of H formed by
ith branch set and all the edges of H incident to that branch set, i = 1, . . . , 6. By
the minimality of H, we see that Hi is a spider with three legs, i = 1, . . . , 6, thus
H = TK3,3.

Finally assume that MK5 ⊆ G. Let H be a smallest (by number of vertices and edges)
subgraph of G, such that H = MK5. Then there are exactly 10 edges between the
branch sets of H. Let Hi be a subgraph of H formed by ith branch set and all the
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edges of H incident to that branch set, i = 1, . . . , 5. Each Hi is either a 4-legged spider
or a tree with exactly two vertices of degree 3 and all other vertices of degrees at most
2. If all Hi’s are 4 legged spiders, then H = MK5.

So assume that H1 is a tree with two vertices, x0, x1 of degree 3 and other vertices of
degrees at most 2. Without loss of generality, let x2, x3 be the vertices from H1 in 2nd
and 3rd branch sets, x4, x5 be vertices of H1 in 4th and 5th branch sets of H, such
that there are disjoint x2-x1-, x3-x1-, x4-x0-, and x5-x0-paths.

Consider H2. Then three edges of H2 that go between 2nd and 1st, 2nd and 4th and
2nd and 5th branch sets are pendant edges of a three-legged spider in H2. Call its
head w2. Similarly define w3, w4, and w5.

Let yi, zi be the vertices in the ith branch set, i = 2, 3, 4, 5, such that y2y4, z2z5, z4z3, y5y3

are edges of H. For each i = 2, 3, 4, 5, xi, yi, zi are legs in a three-legged spider, call its
head wi, or endpoints or a path, call some of these endpoints wi, in the ith branch set.
Then we see that H has a TK3,3 with branch vertices {x0, w4, w5} and {x1, w2, w3}.

Lemma 38. Let G be a 3-connected graph, MK5 6⊆ G and MK3,3 6⊆ G. Then G is
planar.

Proof. We shall prove the statement by induction on |G|. If |G| = 4 we are done as K4

is the only 3-connected graph on 4 vertices and K4 is planar. Assume that |G| > 4.
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Then by Tutte’s lemma, there is an edge xy such that G′ = G ◦ xy is 3-connected.
Since G has no K5 and no K3,3 as minors, so does G′. Thus by induction G′ is planar.
Consider a plane embedding of G′. Let v be a vertex of G′ obtained by contracting
x and y in G. Let C be a face of G′ − {v} containing v. Let X = NG(x) \ {y} and
Y = NG(y) \ {x}.

Let X = {x0, . . . , xk−1} in order on C. Let Pi be an xi-xi+1-path on C, i = 0, . . . , k−1,
addition of indices mod k.

Case 1. |Y ∩ X| ≥ 3. Assume that xi, xj , xk ⊆ Y ∩ X for distinct i, j, k. Then
xi, xj , xk, x, y form the branch vertices of TK5 in G, a contradiction.

Case 2. Y ∩ (V (Pi) \ {xi, xi+1}) 6= ∅ and Y ∩ (V (C) − V (Pi)) 6= ∅. Let zi ∈ Y ∩
(V (Pi)\{xi, xi+1}) and z′i ∈ Y ∩ (V (C)−V (Pi)). Then {y, xi, xi+1}∪{x, zi, zi+1} are
branch sets of TK3,3 in G, a contradiction.

Case 3. Y ⊆ V (Pi) for some i. Embed x as v and y in the region bounded by
vxi, Pi, vxi+1.
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Lemma 39. Let X be a 3-connected graph, G be edge-maximal with respect to
not containing TX. Let S be a vertex cut of G, |S| ≤ 2. Then G = G1 ∪ G2,
V (G1) ∩ V (G2) = S, Gi is edge-maximal without TX and S induces an edge.

Proof. If |S| = 0, add an edge between two components.

If S = {v}, let vi ∈ N(v)∩V (Gi), i = 1, 2. Consider H = TX in G+ v1v2. All branch
vertices of H must be in either G1 or G2, assume without loss of generality in G1.
Then we see that G1 contains TX by replacing a path of H with vv1 if needed.

If S = {x, y}, assume that x and y are not adjacent. Consider H = TX In G + xy.
Again, all branch vertices of H are without loss of generality in G1. Moreover xy ∈
E(H). Replace xy with a path in G2 to obtain a copy of TX in G. This a contradiction,
so xy is an edge in G. To show that G1 is edge-maximal with respect to not containing
TX, consider H = TX in G+ uv, u, v ∈ V (G1). All branch vertices of H is either in
G2 or in G1. If they all are in G2, replace a path of H through uv with one through xy.
This results in TX in G2, a contradiction. Thus, all branch vertices of H are in G1.
Replacing a path of H that is in G2 with xy if needed, we see that TX ⊆ G1 + {uv}.
This shows the maximality of G1 with respect to not containing TX.
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Lemma 40. Let |G| ≥ 4 and G is edge maximal with respect to not containing TK5

or TK3,3. Then G is 3-connected.

Proof. We use induction on |G|. We are done if |G| = 4. Assume that |G| > 4. Assume
that G satisfies the conditions of the lemma but is not 3-connected, i.e., it contains a
vertex cut S = {x, y}. Let G = G1 ∪G2, V (G1) ∩ V (G2) = S.

We have that TK5 6⊆ Gi, TK3,3 6⊆ Gi, and |Gi| < |G|, so by induction Gi is 3-
connected, i = 1, 2. Since TK5 6⊆ Gi and TK3,3 6⊆ Gi, i = 1, 2, we have by Lemma
37 that MK5 6⊆ Gi and MK3,3 6⊆ Gi, i = 1, 2. Since MK5 6⊆ Gi and MK3,3 6⊆ Gi,
i = 1, 2 and Gi’s are 3-connected or K3, we have by Lemma 38 Gi’s are planar. We
have that xy ∈ E(G) by Lemma 39.

Consider embeddings of G1 and G2 so that xy is on the boundary of unbounded face.
Let zi ∈ Gi, i = 1, 2, zi 6∈ {x, y} on the boundary of the respective unbounded face.
Then G+ {z1z2} contains a subgraph H that is TK5 or TK3,3.

Case 1. The branch vertices of H are in Gi, say i = 1. If xz1, yz1 ∈ E(G1), G1 contains
TK5 or TK3,3.

If xz1 6∈ E(G1) then G1 + xz1 contains TK5 or TK3,3. If yz1 6∈ E(G1) then G1 +
yz1 contains TK5 or TK3,3. However, G1 + xz1, G1 + yz1, and G1 are planar, a
contradiction.

44



Case 2. There are branch vertices of H in G1 \G2 and in G2 \G1. Let Wi be the set
of branch vertices of H in V (Gi), i = 1, 2.

Since there are at most 2 independent paths between wi ∈ Wi and wj ∈ Wj , we
see that H 6= TK5. So, H = TK3,3. We see that either |W1 ∩ V (G1 − G2)| = 1 or
|W2∩V (G2−G1)| = 1. Assume that |W2∩V (G2−G1)| = 1 and let v = W2∩V (G2−G1).
Then G′ = G1 +{v}+{vx, vy, vz1} contains TK3,3. But G′ is planar, a contradiction.
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Proof of Kuratowski’s theorem

Theorem 4.5 (Kuratowski’s Theorem). The following statements are equivalent for
graphs G:

i) G is planar;

ii) G does not have K5 or K3,3 as minors;

iii) G does not have K5 or K3,3 as topological minors.

Proof. The equivalence of ii) and iii) follows from Lemma 37.

Assume i). Note that K5 is not planar since 10 = ||K5|| > 3|K5| − 6 = 9, violating the
Euler’s formula. Additionally K3,3 is not planar since 9 = ||K3,3|| > 2|K3,3|−4 = 8, vi-
olating the Euler’s formula for triangle-free graphs. Since K5 and K3,3 are not planar,
TK5 and TK3,3 are not planar, otherwise one can create and embedding of K5 from
one of TK5 by “merging” the edges resulted from subdivisions. Similarly, TK3,3 is
not planar, so G does not contain TK5 and G does not contain TK3,3. This implies iii).

We only need to show that ii) implies i). Let G be a graph that contains neither MK5

nor MK3,3. Add as many edges as possible to preserve this property, let the resulting
graph be G′. By Lemmas 37 and 40, G′ is 3-connected. Lemma 38 states that G′ is
planar. Thus a subgraph G of G′ is planar. This implies i).

Definition 4.6.

• Let X be a set and ≤ ⊆ X2 be a relation on X, i.e., ≤ is a subset of all ordered
pairs of elements in X. Then ≤ is a partial order partial orderif it is reflexive, antisymmetric
and transitive. A partial order is total total orderif x ≤ y or y ≤ x for every x, y ∈ X.

• Let ≤ be a partial order on a set X. The pair (X,≤) is called a poset poset(partially
ordered set). If ≤ is clear from context, the set X itself is called a poset. The
poset dimension of (X,≤) poset dimension,

dim(X,≤)
is the smallest number d such that there are total

orders R1, . . . , Rd on X with ≤ = R1 ∩ · · · ∩Rd.

dim( ) = 1, dim(x y ) = 2 since x y = y
x ∩ x

y

• The incidence poset (V ∪ E,≤) incidence poseton a graph G = (V,E) is given by v ≤ e if and
only if e is incident to v for all v ∈ V and e ∈ E.
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Theorem 41 (Schnyder). Let G be a graph and P be its incidence poset. Then G is
planar if and only if dim(P ) ≤ 3.

Theorem 4.7 (5-Color Theorem, 5.1.2). Every planar graph is 5-colorable.

Proof. We shall apply induction on |V (G)| with a trivial basis when |V (G)| ≤ 5.
Assume that |V (G)| > 5, assume further that G is maximally planar, i.e., it has a
plane embedding that is a triangulation. By Euler’s formula, there is a vertex v of
degree at most 5. By induction, there is a proper coloring c of G−v in at most 5 colors
from [5]. If c assigns at most 4 colors to N(v), we can assign v a color from [5] not
used in N(v). Otherwise, assume w.l.o.g. that N(v) = {v1, v2, v3, v4, v5}, c(vi) = i,
and vi’s are cyclically arranged on the face of G− v. Let c′ be a coloring obtained by
1, 3 switch at v1. If c′(v1) = 3 and c′(v3) = 3, then c′ does not use color 1 on N(v) and
we can color v with 1. So, there is a v1-v3-path colored 1 and 3 in c. Similarly, there is
a v2-v4-path colored 2 and 4 in c. However, this is impossible since these paths must
cross is a vertex and this vertex should have a color in {1, 3} ∩ {2, 4}.

The more well-known 4-coloring theorem is much harder to prove.

Wrong proof of Four Color Theorem by Kempe
Consider a graph G and a proper vertex coloring c using colors from [k]. For a vertex v
of color i, we say that a coloring c′ is obtained from c by an i, j color switch at v if the
colors i and j are switched in the maximal connected subgraph of G that is induced
by vertices of color i and j and contain v.

The idea of Kempe was to prove a Four-Color theorem using color switches and induc-
tion on the number of vertices as follows. Consider a planar graph on n vertices. If
n ≤ 4, the graph is four-colorable. Assume that n > 4 and that each planar graph on
less than n vertices is 4-colorable. By Euler’s formula there is a vertex, v, of degree at
most 5. Let c be a proper coloring of G′ = G− v with at most four colors from [4]. If
the number of colors used on N(v) is at most 3, we see that v could be colored with a
color from [4] not used on its neighbors. Thus we can assume that the degree of v is 4
or 5 and all four colors are present on N(v). If degree of v is 4, assume that the colors
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1, 2, 3, 4 appear cyclically on N(v) on vertices v1, v2, v3, v4 respectively. First, apply
1, 3 color switch at v1. If during this switch the color of v3 remain 3, we can color v
with color 1. Thus, there is a v1-v3-path colored only with 1 and 3. Similarly there
is a v2-v4-path colored with 2 and 4 only. However these paths cross, a contradiction.
Therefore one of these 1-3 or 2-4 switches results in the neighborhood of v having
only three colors and thus v could be colored with the fourth color. Now, assume
that degree of v is 5 and the neighbors are colored 1, 2, 3, 4, 2, on vertices v1, . . . , v5

respectively. As before we can assume that there is a v1-v3-path colored with 1 and
3 and a v1-v4-path colored with 1 and 4. Then, we could do 2-3-switch at v4 and
2-4-switch at v2 that results in N(v) loosing color 2. Thus we can color v with 2.

However, there is a problem, see figure. The 2-3 and 2-4 switches resulted in two
adjacent vertices u and w of color 2. This mistake was found in 1890 by P. Heawood,
after the conjecture was published by De Morgan in 1860, and ”proved” by A. Kempe
in 1878 (published in Nature).

Interestingly, it is one of the first theorems that has been proved using computer
assistance. The computer-generated proof uses an enormous case distinction. Some
mathematicians have philosophical problems with this approach since the resulting
proof cannot be easily verified by humans. A shorter proof is still outstanding.

Theorem 4.8 (Appel and Haken, 1976). Every planar graph is 4-colorable.

Definition 4.9.

• Let L(v) ⊆ N be a list of colors for each vertex v ∈ V . We say that G is L-list-
colorable L-list-colorableif there is coloring c : V → N such that c(v) ∈ L(v) for each v ∈ V and
adjacent vertices receive different colors.

• Let k ∈ N. We say that G is k-list-colorable or k-choosable k-list-colorableif G is L-list-colorable
for each list L with |L(v)| = k for all v ∈ V .

• The choosability choosability,
ch(G)

, denoted by ch(G), is the smallest k such that G is k-choosable.

• The edge choosability edge choosability,
ch′(G)

, denoted by ch′(G), is defined analogously.
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We say that a plane graph is outer triangulation if it has all triangular inner faces and
an outer face forming a cycle.

Theorem 4.10 (5-List-Color Theorem). Let G be a planar graph. Then the list
chromatic number of G is at most 5.

Proof. We shall prove a stronger statement (?): Let G be an outer triangulation with
two adjacent vertices x, y on the boundary of the outer face. Let L : V (G) → 2N be
a list assignment such that |L(x)| = |L(y)| = 1, L(x) 6= L(y), |L(z)| = 3 for all other
vertices on unbounded face, and |L(z)| = 5 for all vertices not on unbounded face.
Then G is L-colorable.

We shall prove (?) by induction on |V (G)| with an obvious basis for |V (G)| = 3.
Consider an outer triangulation G on more than 3 vertices.
Case 1. There is a chord, i.e., an edge uv joining two non-consecutive vertices of the
outer face. Then G = G1 ∪ G2, such that {u, v} = V (G1) ∩ V (G2), |G| > |Gi| ≥ 3,
Gi is an outer triangulation, i = 1, 2. Without loss of generality, x, y are on the outer
face of G1. Apply induction to G1 to obtain a proper L-coloring c′ of G1. Next apply
induction to G2 with u and v playing a role of x and y and list assignments L′ such
that L′(u) = {c′(u)}, L′(v) = {c′(v)}, L′(z) = L(z), for z 6∈ {x, y}. Then there is a
proper L′-coloring c′′ of G2. Since these colorings coincide on u and v, together they
form a proper coloring c of G, i.e., c(v) = c′(v) for v ∈ V (G1) and c(v) = c′′(v) for
v ∈ V (G2).

Case 2. There is no chord, i.e. Case 1. does not hold. Let z be a neighbor of x
on the boundary of outer face, z 6= y. Let Z be the set of neighbors of z not on the
outer face. Let L(x) = {a}, L(y) = {b}. Let c, d ∈ L(z) such that c 6= a and d 6= a.
Let G′ = G− z. Let L′ be list assignment for V (G′) such that L′(v) = L(v)− {c, d},
for v ∈ Z and L′(v) = L(v) for v 6∈ Z. By induction G′ has a proper L′-coloring c′.
We shall extend a coloring c′ to a coloring c or G, i.e., we let c(v) = c′(v) if v 6= z.
We shall give z a color c or d. Specifically, let c(z) ∈ {c, d} \ {c′(q)}, where q is the
neighbor of z on outer face, not equal to x. We see then that z has a color different
from the color of each of its neighbors. Thus c is a proper L-coloring.
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Figure 2: A construction by Mizrakhani of a non-4-choosable planar graph.
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An embedding of a graph on a surface is 2-cell if for each region and each simple
closed curve in the region contracts continuously to a point. Euler formula states that
n− e+ f = 2− 2γ, where n− e+ f is called Euler’s characteristic, and 2γ is Euler’s
genus. For orientable surfaces γ corresponds to the number of handles.

Theorem 42 (Heawood formula, 1890 (Weisstein, Ringel 1968, 1974)). Let G be
embeddable to a surface S with Euler characteristic 2− 2γ, γ > 0. Then

χ(G) ≤
⌊

7 +
√

1 + 48γ

2

⌋
= f(γ).

Moreover, a complete graph Kf(γ) is embeddable on S, unless S is a Klein bottle. For
a Klein bottle f(γ) = 7, however, χ(G) ≤ 6 and K6 is embeddable on the Klein bottle.
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5 Colorings

Lemma 43. For any connected graph G and for any vertex v there is an ordering of
the vertices of G: v1, . . . , vn such that v = vn and for each i, 1 ≤ i < n, vi has a higher
indexed neighbor.

Proof. Consider a spanning tree T of G and create a sequence of sets X1, . . . , Xn−1

with X1 = V (G1), Xi = Xi−1 − {vi−1}, where vi is a leaf of T [Xi] not equal to v, for
i = 1, . . . , n− 1. Then v1, . . . , vn is a desired ordering with vn = v.

Corollary 44 (Greedy estimate for the chromatic number).
Let G be a graph. Then χ(G) ≤ ∆(G) + 1.

Lemma 45. Let G be a 2-connected non-complete graph of minimum degree at least
three. Then there are vertices x, y, and v such that xy 6∈ E(G), xv, yv ∈ E(G), and
G− {x, y} is connected.

Proof. Consider a vertex w of degree at most |G| − 2.

Case 1. G− w has no cutvertices. Let x = w, y be a vertex at distance 2 from x and
v be a common neighbor of x and y. Since y is not a cut-vertex in G− x, G− {x, y}
is connected.

Case 2. G − w has a cutvertex. In this case, let v = w. Then v must be adjacent to
non-cutvertex members of each leaf-block of G − v. Let x and y be such neighbors
in distinct leaf-blocks. Since v has another neighbor besides x and y, G − {x, y} is
connected.

Theorem 5.1 (Brook’s Theorem, 5.2.4). Let G be a connected graph.
Then χ(G) ≤ ∆(G) unless G is a complete graph or an odd cycle.

Proof. We shall prove the result by induction on n. The theorem holds for any graph
on at least three vertices. Assume that |G| > 3.

If G has a cut-vertex v, we can apply induction to the graphs G1 and G2 such that
G1 ∪ G2 = G and V (G1) ∩ V (G2) = {v} and |G1| < |G| and |G2| < G. Indeed, if
each of G1 and G2 is not complete or an odd cycle, then χ(Gi) ≤ ∆(Gi) ≤ ∆(G),
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i = 1, 2. If Gi is a complete graph or an odd cycle for some i, ∆(Gi) < ∆(G) and
χ(Gi) = ∆(Gi) + 1 ≤ ∆(G). By making sure that the color of v is the same in an
optimal proper coloring of G1 and G2 we see that χ(G) ≤ ∆(G).

Note also that if ∆(G) ≤ 2, the theorem holds trivially. So, we assume that ∆(G) ≥ 3.
So, we can assume that G is 2-connected. We shall show that G can be properly
colored with colors from {1, . . . ,∆}, where ∆ = ∆(G).

Case 1 There is a vertex v of degree at most ∆ − 1. We shall order the vertices of
G v1, . . . , vn such that v = vn and each vi, i < n has a neighbor with a larger index.
Such an ordering exists by Lemma 1. Color G greedily with respect to this ordering.
We see at step i, there are at most ∆ − 1 neighbors of vi that has been colored, so
there is an available color for vi.

Case 2 All vertices of G have degree ∆. Consider vertices x, y, v guaranteed by Lemma
45, i.e., such that xy 6∈ E(G) and xv, yv ∈ E(G), and G− {x, y} is connected. Order
the vertices of G as v1, . . . , vn such that v1 = x, v2 = y, vn = v and for each vi,
3 ≤ i < n there is a neighbor of vi with a higher index, such an ordering exists by
Lemma 43. Color G greedily according to this ordering. We see that v1 and v2 get
the same color and as in the previous case, at step i, 3 ≤ i < n, vi has at most ∆− 1
colored neighbors so it could be colored with a remaining color. At the last step, we
see that vn has ∆ colored neighbors, but two of them, v1 and v2 have the same color,
so there are at most ∆− 1 colors used by the neighbors of vn. Thus vn can be colored
with a remaining color.

Definition 5.2.

• The clique number ω(G) of G clique number,
ω(G)

is the largest order of a clique in G.

• The co-clique number α(G) of G co-clique number,
α(G)

is the largest order of an independent set in G.

• A graph G is called perfect perfect graphif χ(H) = ω(H) for each induced subgraph H of G.
For example, bipartite graphs are perfect with χ = ω = 2.
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Lemma 46 (Simple Coloring Results). For any graph G the following hold:

• χ(G) ≥ max{ω(G), |G|/α(G)},

• ‖G‖ ≥
(
χ(G)

2

)
and χ(G) ≤ 1/2 +

√
2‖G‖+ 1/4,

• χ(G) of G is at most one more than the length of a longest directed path in any
orientation of G. Moreover, equality holds for some orientation of G.

Proof. The first item holds since χ(G) ≥ χ(Kω) = ω and each color class in a proper
vertex-coloring is an independent set.
The second item holds since in a proper coloring with χ(G) colors there is an edge
between any two color classes (otherwise one can replace these two color classes with
their union as a new color class).
To prove the last item, consider an arbitrary orientation D of G. Let D′ be a maximal
subdigraph of D that contains no oriented cycle. Note that D′ is spanning. For all
v ∈ V (G), let c(v) be equal to the length of a longest directed path that ends at v
(if there is no such path, we set c(v) = 0). Let P be a path in D′ that starts at u.
Since D′ is acyclic, every path in D′ that end at u has no other vertex on D′. Thus
any path ending at u can be lengthened along P . This implies that c strictly increases
along each path of D′. We claim that c is a proper coloring. For each edge uv ∈ E(G),
there is a directed path in D′ between its endpoints (either uv is an edge of D′ or its
addition to D′ creates a directed cycle). It implies that c(u) 6= c(v), since c strictly
increases along each path in D′. On the other hand, we can create an orientation of G
such that a longest directed path has length at most χ(G)− 1 by coloring the vertices
of G with the colors {1, 2, . . . , χ(G)} and orienting each edge from smaller to larger
color class.

Theorem 47 (Lovász’ Perfect Graph Theorem, 5.5.4). A graph G is perfect if and
only if its complement G is perfect.

Theorem 48 (Strong Perfect Graph Theorem, Chudnovsky, Robertson, Seymour &
Thomas, 5.5.3). A graph G is perfect if and only if it does not contain an odd cycle
on at least 5 vertices (an odd hole) or the complement of an odd hole as an induced
subgraph.

Theorem 49 (Spectral Theorem). Let A be the adjacency matrix of a graph G.
Then A is a symmetric matrix, has an orthonormal basis of eigenvectors and all of its
eigenvalues are real.

Definition 5.3. Let A be the adjacency matrix of a graph G.

• The spectrum λ(G) of G spectrum, λ(G)is the multiset of eigenvalues of A.

• The spectral radius of G spectral radius,
λmax(G)

is λmax(G) := max
{
λ : λ ∈ λ(G)

}
.

Analogously, λmin(G) := min
{
λ : λ ∈ λ(G)

}
.
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Lemma 50 (Small results about the eigenvalues of G). Let A be the adjacency matrix
of G and let H be an induced subgraph of G. Then

• λmin(G) ≤ λmin(H) ≤ λmax(H) ≤ λmax(G),

• δ(G) ≤ 2‖G‖/n ≤ λmax(G) ≤ ∆(G),

• trace(A) = 0, trace(A2) = 2‖G‖, trace(A3) = 6 ·# triangles in G.

Theorem 51 (Spectral estimate for the chromatic number).
Let G be a graph. Then χ(G) ≤ λmax(G) + 1.

Example (Mycielski’s Construction).
We can construct a family

(
Gk = (Vk, Ek)

)
k∈N of triangle-free graphs with χ(Gk) = k

as follows:

• G1 is the single-vertex graph, G2 is the single-edge graph, i.e., G1 = K1 and
G2 = K2.

• Vk+1 := Vk ∪ U ∪ {w} where Vk ∩
(
U ∪ {w}

)
= ∅, Vk = {v1, . . . , vn} and

U = {u1, . . . , un}.
• Ek+1 := Ek ∪

{
wui : i = 1, . . . , k

}
∪
⋃n
i=1

{
uiv : v ∈ NGk(vi)

}
.

G1 G2 G3

Lemma 52. For any k ≥ 1, Mycielski’s graph Gk has chromatic number k. Moreover,
Gk is triangle-free.

Proof. We shall prove this statement by induction on k with trivial basis k = 1.
Assume that k ≥ 2 and χ(Gk−1) = k−1 and Gk−1 is triangle-free. First we show that
χ(Gk) = k. We see that χ(Gk) ≤ k by considering a proper coloring c of Gk−1 with
colors from [k − 1], and letting c′ : Vk → [k] such that c′(vi) = c(vi) for vi ∈ Vk−1,
c′(ui) = c′(vi), ui ∈ Uk, c′(w) = k. Since N(ui)− {w} = N(vi) ∩ Vk−1, the coloring is
proper and so χ(Gk) ≤ k.

Now assume that χ(Gk) < k. Let c be a proper coloring of Gk with colors from [k−1].
We know that since Gk−1 ⊆ Gk, and χ(Gk−1) = k − 1, that all colors from [k − 1]
are used in c. Assume without loss of generality that c(w) = k − 1. Then all vertices
in Uk−1 are colored from [k − 2]. We shall show that the vertices in Vk−1 could also
be colored from [k − 2]. Let S ⊆ Vk−1 be the set of vertices in Vk−1 of color {k − 1}.
Recolor vi ∈ S with c(ui), for each vi ∈ S. We claim that the resulting coloring of
Gk−1 is proper. Assume not and some vi ∈ S is adjacent to a vertex x of color c(ui).
Since S is an independent set x 6∈ S. If x = vj 6∈ S, then ui is adjacent to vj , so
c(ui) 6= c(vj), a contradiction.
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To see that Gk has no triangles, observe that a triangle could only have one vertex in
ui ∈ Uk−1 and two vertices in vj , vm ∈ Vk−1. Then vi, vj , vm form a triangle in Gk−1,
a contradiction.

Example (Tutte’s Construction). We can construct a family (Gk)k∈N of triangle-free
graphs with χ(Gk) = k as follows: G1 is the single-vertex graph. To get from Gk
to Gk+1, take an independent set U of size k(|Gk| − 1) + 1 and

( |U |
|Gk|
)

vertex-disjoint

copies of Gk. For each subset of size |Gk| in U then introduce a perfect matching to
exactly one of the copies of Gk.

Lemma 53. For any k, Tutte’s graph Gk has chromatic number k and it is triangle-
free.

Proof. We argue by induction on k with trivial basis k = 1. We see that χ(Gk) ≤
χ(Gk−1) + 1 because we can assign the same set of χ(Gk−1) colors to each copy of
Gk−1 and a new color to U . Assume that χ(Gk) ≤ χ(Gk−1). Consider a coloring of
Gk with χ(Gk−1) colors. By pigeonhole principle there is a set U ′ of |Gk−1| vertices
in U of the same color, say 1. The vertices of U ′ are matched to a copy G′ of Gk−1.
Then G′ does not use color 1 on its vertices and thus colored with less than χ(Gk−1)
colors. Therefore there are two adjacent vertices of the same color. So, any proper
coloring of Gk uses more than χ(Gk−1) colors.
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To see that Gk has no triangles, observe that any two adjacent edges incident to U
have endpoints in distinct copies of Gk−1, thus are not part of any triangle.

Theorem 54 (Kőnig, 1916). If G is a bipartite graph with maximum degree ∆ then
χ′(G) = ∆.

Proof. We see, that χ′(G) ≥ ∆ because the edges incident to a vertex of maximum
degree require distinct colors in a proper edge-coloring. To prove that χ′(G) ≤ ∆, we
use induction on ||G|| with a basis ||G|| = 1. Let G be given, ||G|| ≥ 2, and assume that
the statement is true for any graph on at most ||G||−1 edges. Let e = xy ∈ E(G). By
induction, there is a proper edge coloring c of G′ = G−e using colors from {1, . . . ,∆}.
In G′ both x and y are incident to at most ∆ − 1 edges. Thus, there are non-empty
color sets Mis(x),Mis(y) ⊆ [∆], where Mis(v) is the set of “missing” colors, i.e., the
set of colors that are not used on edges incident to v and v ∈ {x, y}.
If Mis(x)∩Mis(y) 6= ∅, let α ∈ Mis(x)∩Mis(y), color e with α. This gives χ′(G) ≤ ∆.
If Mis(x) ∩Mis(y) = ∅, let α ∈ Mis(x) and β ∈ Mis(y), consider the longest path P
colored α and β starting at x. Because of parity, P does not end in y, and because y is
not incident to β, y is not a vertex on P . Switch colors α and β on P . Then we obtain
a proper edge-coloring in which β ∈ Mis(x) ∩Mis(y), which allows e to be colored β.
Thus χ′(G) ≤ ∆.
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Theorem 5.4 (Vizing’s Theorem, 5.3.2).
For any graph G with maximum degree ∆,

∆ ≤ χ′(G) ≤ ∆ + 1.

Proof. The lower bound holds because the edges incident to a vertex of maximum
degree require distinct colors in a proper edge-coloring. For the upper bound we use
induction on ||G|| with the trivial basis ||G|| = 1. Let G be a graph, ||G|| > 1, assume
that the assertion holds for all graphs with smaller number of edges. For any edge-
coloring c of a subgraph H of G with colors [∆ + 1], and for any vertex v, let Misc(v)
denote the set of colors from [∆ + 1] not used on the edges of H incident to v. Assume
now that G has no proper edge-coloring with ∆ + 1 colors.

Claim. For any e = xy ∈ E(G), for any proper coloring c of G− e from [∆ + 1], for
any α ∈ Misc(x) and any β ∈ Misc(y), there is an x-y-path colored α and β.

We see that Misc(v) 6= ∅ for any v. If Misc(x)∩Misc(y) 6= ∅, let α ∈ Misc(x)∩Misc(y).
Color xy with α, this gives a proper coloring of G with at most ∆ + 1 colors, a
contradiction.

If Misc(x) ∩Misc(y) = ∅, let α ∈ Misc(x), β ∈ Misc(y), α 6= β. If there is maximal
path P colored α and β that contains x and does not contain y, switch the colors α
and β in P and color xy with β. This gives a proper coloring of G with at most ∆ + 1
colors, a contradiction. This proves the Claim.

Let xy0 ∈ E(G). Let c0 be a proper coloring of G0 := G − xy0 from [∆ + 1]. Let
α ∈ Misc0(x). Let y0, y1, . . . , yk be a maximal sequence of distinct neighbors of x such
that c0(xyi+1) ∈ Misc0(yi), 0 ≤ i < k.

Let ci be a coloring ofGi := G−xyi such that ci(xyj) = c0(xyj+1), for j ∈ {0, . . . , i−1};
ci(e) = c0(e), otherwise. Note that Misci(x) = Miscj (x), for all i, j ∈ {0, . . . , k}.
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Let β ∈ Misc0(yk). Let y = yi be a vertex so that c0(yx) = β. Such a vertex
exists, otherwise either β ∈ Misck(yk)∩Misck(x), contradicting Claim, or the sequence
y0, . . . , yk can be extended, contradicting its maximality.

Then Gk has an α-β path P with endpoints yi−1, yk in Gk − x. On the other hand Gi
has an α-β path P ′ with endpoints yi−1, yi in Gi−x. Since G−x is colored identically
in ck and ci, we have that P ∪ P ′ is a two-colored graph, connected since both paths
P and P ′ contain yi−1 and having three vertices of degree 1. This is impossible.

Lemma 55. The list chromatic number of G = Kn,n with n =
(

2k
k

)
is at least k + 1.

Proof. Let L be a list assignment to the vertices of G with each list of size k such
that the set of lists for parts A and B in G is

(
[2k]
k

)
. We shall show that G is not

colorable from these lists. Assume the opposite, i.e. that c is a proper L-coloring. Let
v1 ∈ A have color a1. Let v2 ∈ A have a list L(v2) not containing a1, let c(v2) = a2,
a2 6= a1. Assume v1, . . . , vi are vertices of A of distinct colors a1, . . . , ai, respectively,
i < k. Let vi+1 be a vertex in A such that L(vi+1) ∩ {a1, . . . , ai} = ∅. Such a vertex
exists because |[2k]− {a1, . . . , ai}| ≥ k, so vi+1 can be taken to be a vertex with a list
that is a subset of [2k]− {a1, . . . , ai}. Consider v1, . . . , vk of distinct colors a1, . . . , ak.
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Consider a vertex u ∈ B such that L(u) = {a1, . . . , ak}. Then u can not be colored
from its list.

Theorem 56 (Galvin’s Theorem). Let G be a bipartite graph. Then ch′(G) = χ′(G).

Definition. A graph is k-constructible if it is isomorphic to Kk or it is obtained from
vertex-disjoint k-constructible graphs G1, G2 via one of the following operations: a)
contraction of two non-adjacent vertices of G1, b) identifying one vertex from G1 with
a vertex in G2, call it x, deleting an edge xyi in Gi, i = 1, 2, adding the edge y1y2.

Theorem 57 (Hajós 1961). A graph has chromatic number at least k if and only if
it contains a k-contructible subgraph.

Proof. Assume first that our graph contains a k constructible subgraph G. If G = Kk

then χ(G) = k. If G is constructed from a k-constructible graph G1 by contracting
two non-adjacent vertices x and y into vxy, such that χ(G1) ≥ k, then χ(G) ≥ k.
Indeed, otherwise a proper `-coloring of G with ` < k can be used to create a proper
`-coloring of G1 by using the color of vxy on both x and y. Let G be created from
k-constructible graphs G1, G2, χ(G) ≥ k, i = 1, 2, by identifying one vertex from G1

with a vertex in G2 (call it x), deleting an edge xyi in Gi, i = 1, 2, and adding an
edge y1y2. Then if χ(G) < k, consider a proper coloring c of G with less than k colors.
Under this coloring y1 and y2 get distinct colors, so one of them get a color different
from c(x), say c(y1) 6= c(x). Thus c restricted to V (G1) is a proper coloring of G1 with
less than k colors, a contradiction. So, we have that χ(G) ≥ k.

Now assume that χ(G) = k. Assume that G does not contain k-constructible sub-
graphs, add edges greedily as long as this property holds. Let the resulting graph be
G′. We see that adding any edge to G′ creates a k-constructible subgraph. If G′ is a
clique, then it has k vertices and it is constructible, a contradiction. If G′ is complete
multipartite, it has k parts, so it contains Kk, that is constructible, a contradiction.
If G′ is not complete multipartite, there are vertices x, y1, y2, such that y1y2 ∈ E(G′)
and xy1, xy2 6∈ E(G′).
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We see that G+ xyi contains a k-constructible graph Gi, i = 1, 2.

Let G′2 be a copy of G2 on a vertex set {y′ : y ∈ V (G2)}, such y′ = y iff y = x and
y ∈ G2 −G1, otherwise y′ 6∈ V (G1). Assume that y′ plays a role of y.

Then G1 and G′2 are k-constructible and a graph G∗ = G1 ∪G2 − {xy1, xy
′
2} ∪ {y1y

′
2}

is k-constructible.

Contracting y with y′ in G∗ for all y 6= y′, y ∈ V (G2) results in a k-contractible graph.
This graph is a subgraph of G′, a contradiction.
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Other coloring results

Total colorings
Let χ′′(G) be the smallest number of colors one can assign to vertices and edges of
G such that no two adjacent and no two incident elements have the same color. This
parameter is called total chromatic number.

Vizing conjectured that χ′′(G) ≤ ∆(G) + 2. One of the best known upper bounds is
due to Molloy and Reed: χ′′(G) ≤ ∆(G) + 1026.

Edge colorings of multigraphs
Let G be a multigraph with no loops and each edge repeated at most µ times. Then
χ′(G) ≤ (3/2)∆(G) and χ′(G) ≤ ∆(G)+µ, where ∆(G) is the largest number of edges,
counting multiplicities, incident to a vertex of G.

Chromatic number, max degree ∆, and clique number ω
Reed’s Conjecture:

χ(G) ≤
⌈

1 + ∆(G) + ω(G)

2

⌉
.

It is known to be true for ω ∈ {2,∆− 1,∆,∆ + 1}.
Johanssen proved that there is a constant C > 0 such that if G is triangle-free and
∆ = ∆(G), then χ(G) ≤ C ∆

log ∆ .

List-colorings and list-edge-colorings
We have seen that χ and χ` = ch can be very far apart for some graphs, for example for
large complete bipartite graphs. However, it is conjectured that the situation is very
different for list-edge-chromatic number, namely that χ′`(G) = χ′(G) for any graph G.
It is proved to be true for bipartite graphs G by Galvin.

When a graph has a large chromatic number compared to the number of vertices, then
a similar result holds for vertex colorings. It was proved by Noel, Reed, and Wu in
2005 that if |V (G)| ≤ 2χ(G) + 1 then χ`(G) = χ(G). This proved a famous conjecture
by Ohba. However, for dense graphs, the list-chromatic number is always large, even
if the graph itself has a small chromatic number. Indeed, Alon proved in 1993 that
for each natural number k there is a natural number f(k) such that for any G with
average degree at least f(k), χ`(G) ≥ k.

Chromatic number of hypergraphs
A vertex coloring of a hypergraph is proper if there is no monochromatic edge. The
smallest number of colors in a proper vertex coloring of a hypergraph is called its
chromatic number. A hypergraph has property B due to Felix Bernstein (1908), if its
chromatic number is 2.

A hypergraph is r-uniform if each hyperedge has size r. A Berge-cycle of length k is
a hypergraph with k distinct edges e0, . . . , ek−1 containing vertices v0, . . . , vk−1 such
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that vi, vi+1 ∈ ei, i = 0, . . . k − 1, addition mod k. The girth of a hypergraph is the
length of a shortest cycle contained in the hypergraph as a subgraph.

Lovász proved in 1968 that for any r, k, ` ≥ 2 there is a hypergraph with chromatic
number k, girth ` and uniformity r.

Erdős introduced the function m(n) that is the smallest number of edges in an n-
uniform hypergraph that does not have property B. The following bounds are known,

C2n
√

n

log n
≤ m(n) ≤ C ′2nn2.

The upper bound was proved by Erdős in 1964 and the lower bound is due to Rad-
hakrishnan and Srinivasan, 2000.

Conjecture (Hadwiger Conjecture). Let r be a natural number and G be a graph.
Then χ(G) ≥ r implies MKr ⊆ G.

For r ∈ {1, 2, 3} this is easy to see, and it is not too difficult to prove it for r = 4. For
r ∈ {5, 6} the conjecture has been proven using the 4-color-theorem. It is still open
for r ≥ 7.

In 2019, Norin and Song proved that any graph with no Kr minor is O(r(log r)0.354)-
colorable. The ideas of this proof were shortly after extended by Postle, who showed
that any graph with no Kr minor is O(r(log r)β)-colorable for any β > 1/4. These are
currently the best results (in general) towards Hadwiger’s conjecture.
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6 Extremal graph theory

In this section c, c1, c2, . . . always denote unspecified constants in R>0.

Definition 6.1.

• Let n be a positive integer and H a graph. The extremal number ex(n,H) extremal number,
ex(n,H)

denotes
the maximum size of a graph of order n that does not contain H as a subgraph
and EX(n,H) EX(n,H)is the set of H-free graphs on n vertices with ex(n,H) edges.

• Let n and r be integers with 1 ≤ r ≤ n. The Turán graph Tr(n) Turán graph,
Tr(n)

is the unique
complete r-partite graph of order n whose partite sets differ by at most 1 in size.
It does not contain Kr+1. We denote ‖Tr(n)‖ by tr(n) tr(n).

• In the special case that n = r · s, for positive integers n, r, s with 1 ≤ r ≤ n, the
Turán graph Tr(n) is also denoted by Ks

r Ks
r.

Example.

• ex(n,K2) = 0, EX(n,K2) = {En}
• ex(n, P3) = bn/2c, EX(n, P3) = {bnc ·K2 + (n mod 2) · E1}

Lemma 58. For any r, n ≥ 1, tr(n+ r) = tr(n) + n(r − 1) +
(
r
2

)
.

Proof. Consider G = Tr(n+ r) graph with parts V1, . . . , Vr. Let vi ∈ Vi, i = 1, . . . , r.
Then G′ = G − {v1, . . . , vr} is isomorphic to Tr(n). We have that ||G|| − ||G′|| is
equal to the number of edges incident to vi’s, for some i = 1, . . . , r. This number is
n(r − 1) +

(
r
2

)
.

64



Lemma 59. Among all n-vertex r-partite graphs, Tr(n) has the largest number of
edges.

Proof. Let first r = 2. Let G be an n-vertex bipartite graph with largest possible
number of edges. Then clearly G is complete bipartite. Assume that two parts V
and U of G differ in size by at least 2, so |V | > |U | + 1. Put one vertex from V to
U to obtain new parts V ′ and U ′ and let G′ be complete bipartite graph with parts
V ′ and U ′. Then ||G′|| = |V ′||U ′| = (|V | − 1)(|U | + 1) = |V ||U | − |U | + |V | − 1 >
|V ||U | − |U |+ |U |+ 1− 1 = |V ||U | = ||G||, a contradiction to maximality of G.

Now, if r > 2, consider any two parts U, V of an r-partite G. Assume that U differs
from V by at least 2 in size. Let X be the remaining set of vertices. Then ||G|| =
||G[X]|| + |X|(n − |X|) + ||G[U ∪ V ]||. Let G′ be a graph on the same set of vertices
as G that differs from G only on edges induced by U ∪ V and so that G′[U ∪ V ] is
a balanced complete bipartite graph. Then from the previous paragraph with r = 2,
we see that ||G′[U ∪ V ]|| > ||G[U ∪ V ]||. Thus ||G′|| > ||G||, a contradiction. Thus
any two parts of G differ in size by at most 1. In addition we see as before that G is
complete r-partite. Thus G is isomorphic to Tr(n).

Lemma 60. For a fixed r,

lim
n→∞

tr(n)(
n
2

) = 1− 1

r
.

Proof. Since each part in Tr(n) has size either bn/rc or dn/re, we see that each part
has size between (n− r)/r and (n+ r)/r. We have that(

n

2

)
− r
(

(n+ r)/r

2

)
≤ tr(n) ≤

(
n

2

)
− r
(

(n− r)/r
2

)
.

Thus (
n

2

)
− r1

2

(n+ r)

r

n

r
≤ tr(n) ≤

(
n

2

)
− r1

2

(n− r)
r

(n− 2r)

r
.

This gives (
n

2

)
− 1

2
(n+ r)

n

r
≤ tr(n) ≤

(
n

2

)
− 1

2
(n− r) (n− 2r)

r
.

Dividing each term by
(
n
2

)
gives.

1− 1

r

(n+ r)n

n(n− 1)
≤ tr(n)(

n
2

) ≤ 1− 1

r

(n− r)(n− 2r)

n(n− 1)
.

Let H be a t-uniform hypergraph and X ⊆ V (H) with |X| ≥ t. Then X induces a

clique in H if it induces
(|X|
t

)
edges.
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Lemma 61. Let H be a set of t-uniform hypergraphs, t ≥ 2, on n vertices that is a
pairwise vertex-disjoint union of k cliques. Then a hypergraph in H with the smallest
number of hyperedges is the one where all cliques have almost equal sizes.

Proof. Assume that H ∈ H has two cliques on vertex sets of sizes a, b, b ≥ a+ 2, i.e.
a < b − 1. Move one vertex from the larger to the smaller clique and consider two
cliques on vertex sets of sizes a′ = a+ 1, b′ = b− 1. Consider the difference d between
the number of hyperedges in the two new and the two old cliques

d =

(
a′

t

)
+

(
b′

t

)
−
(
a

t

)
−
(
b

t

)
=

(
a+ 1

t

)
+

(
b− 1

t

)
−
(
a

t

)
−
(
b

t

)
=

1

t!
((a+ 1)(a) · · · (a− t+ 2) + (b− 1)(b− 2) · · · (b− t))−

1

t!
(a(a− 1) · · · (a− t+ 1)− b(b− 1) · · · (b− t+ 1))

=
1

t!
(a(a− 1) . . . (a− t+ 2)[a+ 1− (a− t+ 1)]) +

1

t!
((b− 1) . . . (b− t+ 1)[b− t− b])

=
1

t!
(a(a− 1) . . . (a− t+ 2)t− (b− 1) . . . (b− t+ 1)t)

=
t

t!
(a(a− 1) . . . (a− t+ 2)− (b− 1) . . . (b− t+ 1))

< 0.

This contradicts the fact that H had the smallest number of hyperedges.

Theorem 62 (Mantel’s theorem). If a graph G on n vertices contains no triangle then

it contains at most n2

4 edges.

First proof of Mantel’s theorem. We proceed by induction on n. For n = 1 and n = 2,
the result is trivial, so assume that n > 2 and we know it to be true for n − 1. Let
G be a graph on n vertices. Let x and y be two adjacent vertices in G. Since every
vertex in G is connected to at most one of x and y, there are at most n − 2 edges
between {x, y} and V (G)−{x, y}. Let H = G−{x, y}. Then H contains no triangles
and thus, by induction, H has at most (n− 2)2/4 edges. Therefore, the total number
of edges in G is at most (n− 2)2/4 + n− 1 = n2/4.

Second proof of Mantel’s theorem. Let A be the largest independent set in the graph
G. Since the neighborhood of every vertex x is an independent set, we must have
deg(x) ≤ |A|. Let B be the complement of A. Every edge in G must meet a vertex
of B. Therefore, the number of edges in G satisfies ||G|| ≤

∑
x∈B deg(x) ≤ |A||B| ≤

(|A|+ |B|)2/4 = n2/4.

Note that the equality holds for even n if and only if |A| = |B| and G is a complete
bipartite graph with parts A and B.
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Theorem 6.2 (Turán’s Theorem, 7.1.1). For all integers r > 1 and n ≥ 1, any
graph G with n vertices, ex(n,Kr) edges and Kr 6⊆ G is a Tr−1(n). In other words
EX(n,Kr) = {Tr−1(n)}.

Proof. We shall use induction on n for a fixed r. If n ≤ r − 1, then Kn is the graph
with largest number of edges, n vertices and no copy of Kr. Since Kn = Tr−1(n), the
basis case is complete.

Assume that n > r − 1. Let G ∈ EX(n,Kr). Then G contains a copy K of Kr−1

otherwise we could add an edge to G without creating a copy of Kr, thus violating
maximality of G. Let G′ = G− V (K). By induction hypothesis

||G′|| ≤ tr−1(n− r + 1).

Thus

||G|| = ||G′||+||K||+||G[V (K), V−V (K)]|| ≤ tr−1(n−r+1)+

(
r − 1

2

)
+(n−r+1)(r−2).

(1)

Indeed, the last term holds since any vertex of V − V (K) is adjacent to at most
|V (K)| − 1 = r − 2 vertices of K (otherwise we would have had a copy of Kr in G).

By Lemma 58, tr−1(n) = tr−1(n− r + 1) +
(
r−1

2

)
+ (n− r + 1)(r − 2) and thus

||G|| ≤ tr−1(n).

On the other hand we know that Tr−1(n) does not have Kr as a subgraph, so the
densest Kr-free graph G should have at least as many edges as Tr−1(n).

Thus
||G|| ≥ tr−1(n).

In particular
||G|| = tr−1(n)

and all inequalities in (1) are equalities.

So, in particular ||G′|| = tr−1(n− r+ 1), by induction G′ = Tr−1(n− r+ 1), and each
vertex of V − V (K) sends exactly r − 2 edges to K. Let V1, . . . , Vr−1 be the parts of
G′. For all v ∈ V1 ∪ · · · ∪ Vr−1, let f(v) ∈ V (K) so that v is not adjacent to f(v).

If there are indices i, j ∈ [r − 1], i 6= j so that there are vertices v ∈ Vi, v′ ∈ Vj for
which f(v) = f(v′), then V (K) ∪ {v, v′} induces an r-clique in G, a contradiction.

Therefore we can suppose that for all i, j ∈ [r−1], i 6= j and for any v ∈ Vi and v′ ∈ Vj ,
f(v) 6= f(v′). It implies that for any i ∈ [r−1] and any u, u′ ∈ Vi, f(u) = f(u′). Denote
the vertices of K by v1, . . . , vr−1 where vi f(ui) with ui ∈ Vi.
Then G = Tr−1(n) with parts Vi ∪ {vi}.
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Theorem 63. For any positive integers n and k, n ≥ k,

ex(n, Pk+1) ≤ k − 1

2
n.

Moreover, if n is divisible by k then the equality holds. In addition, for any n ≥ k
there is an extremal graph G ∈ EX(n, Pk+1) such that G is pairwise vertex disjoint
union of cliques all of which have size k except for at most one of size at most k.

Proof. We prove only the first two statements.
We shall prove that ex(n, Pk+1) ≤ k−1

2 n by induction on n.
If n = k then Kn contains no copy of Pk+1, ||Kn|| =

(
n
2

)
= n(n− 1)/2 = n(k − 1)/2.

Assume that n > k. Let G be a graph on n vertices not containing a path of length k
as a subgraph. If G is not connected, i.e., G is a union of two vertex disjoint graphs
G1 and G2 on t and n− t vertices, respectively, 0 < t < n, then by induction

||G|| = ||G1||+ ||G2|| ≤
k − 1

2
t+

k − 1

2
(n− t) =

k − 1

2
n.

So, we assume that G is connected. We shall prove first that δ(G) ≤ (k−1)/2. Assume
not and consider a longest path P in G with end-points x and y. Then N(x), N(y) ⊆
V (P ). Since |N(x)|, |N(y)| > (k − 1)/2 and ||P || < k, there are consecutive vertices
x′, y′ on P such that xy′, x′y ∈ E(G), and so xPx′yPy′x is a cycle C. If there is
an edge in G with one vertex on C and another not, we can find a longer path, a
contradiction. Since G is connected, we have then that V (C) = V (G), a contradiction
since |G| = n > k ≥ |V (C)|.
Let x be a vertex of minimum degree in G. Thus

||G|| ≤ (k − 1)/2 + ||G− x|| ≤ k − 1

2
+
k − 1

2
(n− 1) =

k − 1

2
n.

On the other hand, when n is divisible by k, observe that a pairwise vertex-disjoint
union of cliques on k vertices does not contain a path of length k as a subgraph and
has a desired number (n/k)

(
k
2

)
= (k − 1)n/2 edges.

Theorem 64. Let G be a graph on n vertices and at least kn edges, k < n/2. Then
G contains all k-vertex trees as subgraphs.

Proof. First we note that there is a subgraph G′ of G of minimum degree at least k.
Indeed, otherwise there is a vertex v1 of degree at most k − 1, in G − v1 there is a
vertex v2 of degree at most k − 1, etc. So, the total number of edges then is at most
n(k − 1), a contradiction.

We shall show that G′ contains all k-vertex trees as subgraphs by induction on k. If
k = 1, then the statement is trivial. Assume that k > 1. Let T be a tree on k vertices
and let T ′ = T − v, where v is a leaf of T . Let u be the neighbor of v in T . Then
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by induction G′ contains a copy of T ′ with a vertex u′ playing a role of u. Since
degG′(u

′) ≥ k and |T ′ − u′| = k − 2, we see that there is a vertex of v′ ∈ V (G′ − T ′),
such that v′ is adjacent to u′. Thus V (T ′)∪{v′} induces a graph containing a copy of
T .

Conjecture 65 (Erdős-Sós). If |G| = n and ||G|| > (k − 1)n/2, then G contains all

k-edge trees as subgraphs. I.e., for any tree T on k edges ex(n, T ) ≤ (k−1)n
2 .

Theorem 66 (Erdős-Stone-Simonovits). For any graph H and for any fixed ε > 0,
there is n0 such that for any n ≥ n0,(

1− 1

χ(H)− 1
− ε
)(

n

2

)
≤ ex(n,H) ≤

(
1− 1

χ(H)− 1
+ ε

)(
n

2

)
.

Proof outline. Let r = χ(H)− 1.

For the upper bound, let G be a graph on n vertices that has
(

1− 1
χ(H)−1 + ε

) (
n
2

)
edges. We shall show that G has a subgraph isomorphic to H. Let G′ be a large
subgraph of G that has minimum degree at least (1 − 1/r + ε/2)|V (G′)|, we can find
such a G′ by greedily deleting vertices of smaller degrees. Then show, by induction on
r that G′ contains a complete (r + 1)-partite graph H ′ with sufficiently large parts.
Finally, observe that H ⊆ H ′.
For the lower bound, observe that Tr(n) does not contain H as a subgraph and has
the desired number of edges.

Definition 6.3. The Zarankiewicz Zarankiewicz,
z(m,n; s, t)

function z(m,n; s, t) denotes the maximum number
of edges that a bipartite graph with parts X, Y of sizes m, n, respectively, can have
without containing Ks,t respecting sides (i.e., there is no copy of Ks,t with partition
sets S, T , of sizes s, t, respectively, such that S ⊆ X and T ⊆ Y ).
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Theorem 67 (Kővári-Sós-Turán Theorem).
We have the upper bound

z(m,n; s, t) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m

for the Zarankiewicz function. In particular,

z(n, n; t, t) ≤ c1 · n · n1−1/t + c2 · n = O(n2−1/t)

for m = n and t = s.

Proof. Let G be a bipartite graph with parts A, |A| = m and B, |B| = n such that it
does not contain a copy of Ks,t with part of size s in A and part of size t in B. Let T
be the number of stars of size t with a center in A. Then

T =
∑
v∈A

(
deg(v)

t

)
.

On the other hand

T ≤ (s− 1)

(
n

t

)
.

Since for each subset Q of t vertices in B there are at most s− 1 stars counted by T
with a leaf-set Q. Thus ∑

v∈A

(
deg(v)

t

)
≤ (s− 1)

(
n

t

)
.

Let e = ||G||. Then e =
∑
v∈A deg(v). Then by Lemma 61.∑

v∈A

(
deg(v)

t

)
≥ m

(
e/m

t

)
.

Thus

m

(
e/m

t

)
≤ (s− 1)

(
n

t

)
=⇒

m

s− 1
≤

(
n
t

)(
e/m
t

) =⇒

m

s− 1
≤ n

e/m

n− 1

e/m− 1
· · · n− t+ 1

e/m− t+ 1
=⇒

m

s− 1
≤

(
n− t+ 1

e/m− t+ 1

)t
=⇒ (2)

e ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m.

Note here, that (2) holds since p/q < (p−1)/(q−1) iff p > q. Here p = n and q = e/m
and we have that e ≤ mn, so e/m < n.
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Lemma 68. For any positive integers n, t, t < n, ex(n,Kt,t) ≤ z(n, n; t, t)/2.

Proof. Let G be a graph on n vertices with no subgraph isomorphic to Kt,t. Let G′ be
a bipartite graph with partite sets V (1), V (2), V (i) = {v(i) : v ∈ V (G)} and and edge
set E = {v(1)u(2) : uv ∈ E(G)}. Then we see that ||G′|| = 2||G||. Assume that there
is a copy of Kt,t in G′ with parts V ′(1) ⊆ V (1), V ′(2) ⊆ V (2). Then if v(1) ∈ V ′(1),
u(2) ∈ V ′(2), then u 6= v. Thus this copy of Kt,t corresponds to a Kt,t in G. Therefore
||G′|| ≤ z(n, n; t, t) which completes the proof.

Theorem 69. For any positive t, and n > t, there are positive constants C and C ′

such that
C ′n2− 2

t+1 ≤ ex(n,Kt,t) ≤ Cn2−1/t.

Proof. The upper bound follows from Theorem 67 and Lemma 68.

Thus we shall only prove the lower bound. Let G = G(n, p) be a random graph where
the edges are chosen independently with probability p each. Let p = n−2/(t+1). Then
Exp(|E(G)|) = p

(
n
2

)
and Exp(#Kt,t

′s) ≤
(
n
2t

)(
2t
t

)
pt

2

. Delete an edge from each copy
of Kt,t. Call the resulting graph G′. Note that G′ has no copies of Kt,t.

Exp(|E(G′)|) ≥ Exp(|E(G)|)− Exp(#Kt,t
′s)

≥ p

(
n

2

)
−
(
n

2t

)(
2t

t

)
pt

2

≥ n2−2/t+1 − n2t(t!)−2n−2t2/(t+1)

= n2−2/(t+1) − n2t−2t+2t/(t+1)(t!)−2

= n2−2/(t+1)(1− 1/2)

= C ′n2−2/(t+1).

Thus there is a graph with at least C ′n2−2/(t+1) edges and no copy of Kt,t.

Corollary 70. If χ(H) ≥ 3, then ex(n,H) = cn2(1 + o(1)), for some constant c. If
χ(H) = 2, then ex(n,H) = o(n2).

Theorem 71 (Erdős, Rényi, Sós; Bondy and Simonovits; Lazebnik, Ustimenko,
Woldar).

ex(n,C4) =
1

2
n3/2 + o(n3/2), ex(n,C6) = Θ(n4/3), ex(n,C10) = Θ(n6/5),

C ′n1+ 2
3k−2−ε ≤ ex(n,C2k) ≤ Cn1+ 1

k ,

where ε = 0 if k is even, ε = 1 if k is odd.

Proof. We shall only prove that C ′n3/2 ≤ ex(n,C4) ≤ Cn3/2 for some positive con-
stants C and C ′. The upper bound is implied by Theorem 69.
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For the lower bound, we need to find a graph on n vertices, C ′n3/2 edges, and not
containing C4 as a subgraph.

First we shall contruct a C4-free graph Hp on p(p − 1) vertices for a prime p. Let
V (Hp) = Zp \ {0} × Zp. Two vertices (a, b) and (c, d) are adjacent if and only if
ac = b+ d modulo p.

Assume first that Hp contains a copy of C4 - (c, d), (x′, y′), (a, b), (x′′, y′′), (c, d). Then
the system {

ax = b+ y

cx = d+ y

has two distinct solutions (x, y) = (x′, y′) and (x, y) = (x′′, y′′). However, subtracting
the equations of the system we get (a−c)x = b−d. If b−d = 0, then since (a, b) 6= (c, d),
a − c 6= 0, so x = 0, impossible. If b − d 6= 0, then since x 6= 0, a − c 6= 0 and then
x = (b−d)(a−c)−1. So, x is defined uniquely. Then y = ax−b is also defined uniquely.
A contradiction to our assumption that there are two solutions. Now, we shall find
||Hp||. For each vertex (a, b) there are p − 1 solutions of the equation ax = b + y.
Indeed, choose x arbitrarily in p− 1 ways and express y. Thus Hp is a (p− 1) regular
graph on p(p− 1) vertices, so ||Hp|| = (p− 1)2p/2. We see, that ||Hp|| ≥ c|Hp|3/2.

Now, we need to construct a C4-free graph G on n vertices for an arbitrary n, so that
||G|| ≥ c′n3/2. We note that for any sufficiently large m there is a prime number p,
p ∈ (m−m0.6,m]. Let m = b

√
nc, pick a prime p ∈ (m−m0.6,m]. Then

0.99n ≤ (m−m0.6 − 1)2 ≤ p(p− 1) ≤ m2 ≤ n.

Let G be a graph consisting of Hp and isolated vertices. Clearly G does not have C4’s
as subgraphs since Hp does not. In addition,

||G|| = ||Hp|| = c|Hp|3/2 ≥ c(0.99n)3/2 = c′n3/2.

Theorem 72 (Sachs, Erdős; Imrich; Erdős-Gallai). If δ(G) = d > 2 then G contains
a cycle of length at most 2 log n/ log(d− 1). For any integer d > 2 there is a graph of
minimum degree d that has no cycles of lengths at most 0.4801 log n/ log(d − 1) − 2.
Any n vertex graph with 1

2 (k − 1)(n− 1) edges has a cycle of length at least k. This
is tight if (n− 1) is divisible by (k − 2).
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Definition 6.4. Let X,Y ⊆ V (G) be disjoint vertex sets and ε > 0.

• We define ‖X,Y ‖ to be the number of edges between X and Y and the den-
sity d(X,Y ) of (X, Y) density, d(X,Y )to be

d(X,Y ) :=
‖X,Y ‖
|X||Y |

.

• For ε > 0 the pair (X,Y ) is an ε-regular pair ε-regular pairif we have |d(X,Y )− d(A,B)| ≤ ε
for all A ⊆ X, B ⊆ Y with |A| ≥ ε|X| and |B| ≥ ε|Y |.

• An ε-regular partition ε-regular partitionof the graph G = (V,E) is a partition of the vertex set V =
V0∪̇V1∪̇ · · · ∪̇Vk with the following properties:

1. |V0| ≤ ε|V |
2. |V1| = |V2| = · · · = |Vk|
3. All but at most εk2 of the pairs (Vi, Vj) for 1 ≤ i < j ≤ k are ε-regular.

Theorem 6.5 (Szemerédi’s Regularity Lemma, 7.4.1). For any ε > 0 and any inte-
ger m ≥ 1 there is an M ∈ N such that every graph of order at least m has an ε-regular
partition V0∪̇ · · · ∪̇Vk with m ≤ k ≤M .
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Theorem 6.6 (Erdős-Stone Theorem, 7.1.2). For all integers r > s ≥ 1 and any ε > 0
there exists an integer n0 such that every graph with n ≥ n0 vertices and at least

tr−1(n) + εn2

edges contains Ks
r as a subgraph.

Corollary 73. Erdős-Stone together with limn→∞ t(n, r)/
(
n
2

)
= 1 − 1/r yields an

asymptotic formula for the extremal number of any graph H on at least one edge:

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1

For example, ex(n,K5 \ {e}) ' 2/3 ·
(
n
2

)
since χ(K5 \ {e}) = 4.

Chvátal and Szemerédi proved a more quantitative version of the Erdős-Stone theorem.

Theorem 74 (Chvátal-Szemerédi Theorem). For any ε > 0 and any integer r ≥ 3,
any graph on n vertices and at least

(
1 − 1/(r − 1) + ε

)(
n
2

)
edges contains Kt

r as a
subgraph. Here t is given by

t =
log n

500 · log(1/ε)
.

Furthermore, there is a graph G on n vertices and
(
1− (1 + ε)/(r− 1)

)(
n
2

)
edges that

does not contain Kt
r for

t =
5 · log n

log(1/ε)
,

i.e., the choice of t is asymptotically tight.

Theorem 75 (Bollobás-Thomason 1998, 7.2.1). Every graph G of average degree at
least cr2 contains Kr as a topological minor.

Theorem 76 (7.2.4). Let G be a graph of minimum degree δ(G) ≥ d and girth g(G) ≥
8k + 3 for d, k ∈ N and d ≤ 3. Then G has a minor H of minimum degree δ(H) ≥
d(d− 1)k.

Theorem 77 (Thomassen’s Theorem, 7.2.5). For all r ∈ N there exists a function
f : N→ N such that every graph of minimum degree at least 3 and girth at least f(r)
has a Kr minor.

Theorem 78 (Kühn-Osthus, 7.2.6). Let r ∈ N. Then there is a constant g ∈ N such
that we have TKr ⊆ G for every graph G with δ(G) ≥ r − 1 and g(G) ≥ g.
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7 Ramsey theory

In every 2-coloring in this section we use the colors red and blue.

Definition 7.1.

• In an edge-coloring of a graph, a set of edges is

– monochromatic monochromaticif all edges have the same color,

– rainbow rainbowif no two edges have the same color,

– lexical lexicalif two edges have the same color if and only if they have the same
lower endpoint in some ordering of the vertices.

• Let k be a natural number. Then the Ramsey number R(k) ∈ N Ramsey, R(k)is the smallest n
such that every 2-edge-coloring of Kn contains a monochromatic Kk.

• Let k and l be natural numbers. Then the asymmetric Ramsey number R(k, l) asymmetric
Ramsey, R(k, l)is the smallest n ∈ N such that every 2-edge-coloring of a Kn contains a red Kk

or a blue Kl.

• Let G and H be graphs. Then the graph Ramsey number R(G,H) graph Ramsey,
R(G,H)

is the small-
est n ∈ N such that every red-blue edge-coloring of Kn contains a red G or a
blue H.

• Let r, l1, . . . , lk be natural numbers. Then the hypergraph Ramsey number
Rr(l1, . . . , lk) hypergraph

Ramsey,
Rr(l1, . . . , lk)

is the smallest n ∈ N such that for every k-coloring of
(

[n]
r

)
there

is an i ∈ {1, . . . , k} and a V ⊆ [n] with |V | = li such that all sets in
(
V
r

)
have

color i.

• Let G and H be graphs. Then the induced Ramsey number IR(G,H) induced Ramsey,
IR(G,H)

is the
smallest n ∈ N for which there is a graph F on n vertices such that in any red-
blue coloring of E(F ), there is an induced subgraph of F isomorphic to G with
all its edges colored red or there is an induced subgraph of F isomorphic to H
with all its edges colored blue.

• For n ∈ N and a graph H, the anti-Ramsey number AR(n,H) anti-Ramsey,
AR(n,H)

is the maximum
number of colors that an edge-coloring of Kn can have without containing a
rainbow copy of H.
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Lemma 79.

• R(3) = 6, i.e., every 2-edge-colored K6 contains a monochromatic K3 and there
is a 2-coloring of a K5 without monochromatic K3’s.

• Clearly, R(2, k) = R(k, 2) = k.

Theorem 7.2 (Ramsey Theorem, 9.1.1). For any k ∈ N we have
√

2
k ≤ R(k) ≤ 4k.

In particular, the Ramsey numbers, the asymmetric Ramsey numbers and the graph
Ramsey numbers are finite.

Proof. For the upper bound, consider an edge-coloring of G = K4k with colors red and
blue. Construct a sequence of vertices x1, . . . , x2k, a sequence vertex sets X1, . . . , X2k,
and a sequence of colors c1, . . . , c2k−1 as follows. Let x1 be an arbitrary vertex, X1 =
V (G). Let X2 be the largest monochromatic neighborhood of x1 in X1, i.e., largest
subset of vertices from X1, such that all edges from this subset to x1 have the same

color. Call this color c1. We see that |X2| ≥ d |X1|−1
2 e ≥ 4k/2. Let x2 be an arbitrary

vertex in X2. Let X3 be the largest monochromatic neighborhood of x2 in X2 with
respective edges of color c2, x3 ∈ X3, and so on let Xm be the largest monochromatic
neighborhood of xm−1 with respective color cm−1 in Xm−1, xm ∈ Xm. We see that
|Xm| ≥ 4k/2m−1. Thus |Xm| > 0 as long as 2k > (m − 1), i.e., as long as m ≤ 2k.
Consider vertices x1, . . . , x2k and colors c1, . . . , c2k−1. At least k of the colors, say
ci1, ci2, . . . , cik are the same by pigeonhole principle, say without loss of generality,
red. Then xi1, xi2, . . . , xik induce a k-vertex clique all of whose edges are red.
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For the lower bound, we shall construct a coloring of Kn, n = 2k/2 with no monochro-
matic cliques on k vertices. Let’s color each edge red with probability 1/2 and blue
with probability 1/2. Let S be a fixed set of k vertices. Then

Prob(S induces a red clique) = 2−(k2).

Thus Prob(S induces monochromatic clique) = 2−(k2)+1. Therefore

Prob( there is a monochromatic clique on k vertices) ≤
(
n

k

)
2−(k2)+1

≤ nk

k!
2−k

2/2+k/2+1

≤ 2k/2+1

k!
< 1.

Thus there is a coloring with no monochromatic cliques of size k.

Remark. R(2) = 2, R(3) = 6, R(4) = 18 and 43 ≤ R(5) ≤ 48.

Theorem 80. For any integers k, ` ≥ 2, R(k, `) ≤
(
k+`−2
k−1

)
.

Proof. We shall prove the statement by induction on k+` with basis case k = 2, ` = 2.
We know that R(2, 2) = 2 ≤

(
2+2−2

1

)
= 2.

Consider R(k, `). Assume that R(k′, `′) ≤
(
k′+`′−2
k′−1

)
if k′ + `′ < k + `.

Let N = R(k, `)− 1 and let c be an edge-coloring of G = KN in red (r) and blue (b)
with no red Kk and no blue K`. Fix a vertex v. Let X and Y be vertex sets such that
X = {x : c(xv) = r}, Y = {y : c(yv) = b}. Then G[X] does not contain a red Kk−1

(otherwise together with v it would form a red Kk), and it does not contain a blue
K`. Similarly, G[Y ] does not contain a blue K`−1 and does not contain a red Kk.
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By definition of Ramsey number, |X| ≤ R(k−1, `)−1 and |Y | ≤ R(k, `−1)−1. Thus

N = |X|+ |Y |+ 1 ≤ R(k − 1, `)− 1 +R(k, `− 1)− 1 + 1.

On the other hand
N = R(k, `)− 1.

Thus
R(k, `) ≤ R(k − 1, `) +R(k, `− 1).

By induction hypothesis, we have

R(k, `) ≤ R(k − 1, `) +R(k, `− 1) ≤
(
k + `− 3

k − 2

)
+

(
k + `− 3

k − 1

)
=

(
k + `− 2

k − 1

)
.

Theorem 81. Let s ≥ t ≥ 1, s, t ∈ Z. Then R(sK2, tK2) = 2s+ t− 1.

Proof. Lower bound:
Consider a complete graph G on 2s + t − 2 vertices. Color all edges of a complete
subgraph on 2s− 1 vertices red and all remaining edges blue.

Then we see that there is no red sK2 since the red edges of G span 2s− 1 vertices and
sK2 spans 2s vertices. In addition, there is no blue tK2 because every blue edge in G
is incident to a set S of t− 1 vertices and the smallest number of vertices intersecting
all edges of tK2 is t. This shows that R(sK2, tK2) ≥ 2s+ t− 1.

Upper bound:
Next we shall show, by induction on min{s, t}, that in any edge coloring of K2s+t−1

there is a red sK2 or there is a blue tK2. If t = 1, then R(sK2,K2) = 2s = 2s+ t− 1.
Indeed, if K2s has only red edges, there is a red sK2. If it has at least one blue edge,
there is a blue K2.

Now let t ≥ 2 and consider G = K2s+t−1 edge-colored red and blue. If all edges
of G are red or all edges of G are blue, we have a red sK2 or a blue tK2. Thus
there are red and blue edges and there are two adjacent edges xy and yz of different
colors, say xy is red and yz is blue. Let x, y, z be the vertices in these edges. Since
|V (G)− {x, y, z}| = 2s+ t− 1− 3 = 2(s− 1) + (t− 1)− 1, we have by induction that
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G− {x, y, z} contains a red (s− 1)K2 or a blue (t− 1)K2. Together with xy or yz we
have a red sK2 or a blue tK2.

Explicit Ramsey construction

Let F be a family of k-element subsets of an n-element set. By the result of Ray-
Chaudhuri and Wilson,

if |{|F ∩ F ′| : F, F ′ ∈ F}| ≤ s, then |F| ≤
(
n

s

)
. (3)

By the result of Frankl and Wilson,

if |F ∩ F ′| 6≡ k (mod q) for a prime power q then |F| ≤
(

n

q − 1

)
. (4)

Theorem 82 (Frankl and Wilson). When k is sufficiently large,

r(k) ≥ exp

(
log2 k

20 log log k

)
.

Proof. Let V (G) =
(
X

q2−1

)
, where |X| = q3 and q is a sufficiently large prime power.

Let
E(G) = {{F, F ′} : |F ∩ F ′| 6≡ −1 (mod q)}.

If F1, . . . , Fm form a complete graph, then m ≤
(
q3

q−1

)
by (4). If F1, . . . , Fm form an

independent set, then the pairwise intersections have sizes q− 1, 2q− 1, . . . , q2− q− 1,

so m ≤
(
q3

q−1

)
by (3). So, G has no clique or co-clique on k vertices, where

|V (G)| =
(

q3

q2 − 1

)
and k =

(
q3

q − 1

)
.

Using the bounds
(
n
m

)m ≤ (nm) ≤ nm, we have that

qq ≤ k ≤ q3q and |V (G)| ≥ qq
2/2.

So q log q ≤ log k ≤ 3q log q and thus log k/3 log q ≤ q ≤ log k/ log q. Therefore
log q ≤ log log k − log log q ≤ log log k and thus q ≥ log k/3 log log k. Therefore

|V (G)| ≥ (log k/3 log log k)log2 k/18(log log k)2

= exp(log2 k(log log k − log 3− log log log k)/18(log log k)2)

≥ exp(log2 k/20 log log k).
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Note that this gives that r(k) ≥ kc
√

log k, i.e., this bound is greater than any power
of k but smaller than exponential. The best constructive bound up to date is due to
Barak, Rao, Shatiel and Wigderson: r(k) ≥ exp((1 + o(1)) log(2+a)k), for a positive
constant a.

Let R(p, q; r) be the hypergraph Ramsey number for r-uniform hypergraphs, i.e.,

R(p, q; r) = min

{
N : ∀c :

(
[N ]

r

)
→ {0, 1}

∃A ⊆ [N ], |A| = p,∀A′ ∈
(
A

r

)
c(A′) = 0 or

∃B ⊆ [N ], |B| = q,∀B′ ∈
(
B

r

)
c(B′) = 1

}
We say that a complete r-uniform hypergraph on n vertices is an r-clique on n vertices.

The following theorem show the existence of hypergraph Ramsey numbers.

Theorem 83. For any parameters p, q, r ≥ 2,

R(p, q; r) ≤ R
(
R(p− 1, q; r), R(p, q − 1; r); r − 1

)
+ 1.

Proof. Let c :
(
X
r

)
→ {red, blue}, where |X| = R(R(p−1, q; r), R(p, q−1; r); r−1)+1.

We shall show that there is a red r-clique on p vertices or a blue r-clique on q vertices.
Let x ∈ X. Let c′ :

(
X−x
r−1

)
→ {red, blue} be defined as follows: for any A ⊆ X − x,

let c′(A) = c(A ∪ x). Let p1 = R(p − 1, q; r) and q1 = R(p, q − 1; r). Since |X − x| =
R(p1, q1; r−1), there is a red (r−1)-clique on vertex set X ′, |X ′| = p1, or a blue (r−1)-
clique on vertex set X ′′, |X ′′| = q1. Assume the former. The latter is treated similarly.
Then in c, all sets A∪ x are red, where A ⊆ X ′. Since |X ′| = p1 = R(p− 1, q; r), then
in X ′ under c there is either a blue r-clique of size q and we are done, or there is a red
r-clique on vertex set X∗ ⊆ X ′, |X∗| = p − 1. But then X∗ ∪ x forms a red r-clique
under c on p vertices and we are done.

Lemma 84. We have c1 · 2k ≤ R2(3, . . . , 3︸ ︷︷ ︸
k

) ≤ c2 · k! for some constants c1, c2 > 0.
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Applications of Ramsey theory

Theorem 85 (Erdős, Szekeres). Any list of more than n2 numbers contains a non-
decresing or non-increasing sublist of more than n numbers.

Proof. Let a1, . . . , an2+1 be a list of numbers. Let ui be the length of a longest non-
decreasing sublist ending with ai. Let di be the length of a longest non-increasing
sublist ending with ai. Assume that the statement of the theorem is false. Then
ui, di ≤ n and there are at most n2 distinct pairs (ui, di). Since there are more than
n2 numbers there are indices i < j such that (ui, di) = (uj , dj). If ai ≤ aj , we have
ui < uj . If ai ≥ aj , we have di < dj , a contradiction.

Theorem 86 (Erdős, Szekeres). For any integer m, m ≥ 3, there is an integer N =
N(m) such that if X is a set of N points on the plane such that no three points are
on a line, then X contains a vertex set of a convex m-gon.

Proof. Let N = R(m, 5; 4). For each 4-element subset X ′ of X color it red if the convex
hull of X ′ is a 4-gon, it blue if the convex hull of X ′ is a triangle. By definition of R,
there is either a set A of m points, such that

(
A
4

)
is red, or a set B of 5 points such that(

B
4

)
is blue. Assume the latter. Then we see in particular that the convex hull of B is

a triangle T and there are two vertices u, v of B inside this triangle. Consider a line
through u, v, it splits the plane in two parts, one containing one vertex of T , another
two vertices of T , call them x, y. Then the convex hull of {u, v, x, y} is a 4-gon, so
{x, y, u, v} is colored red, a contradiction. Therefore there is a set A of m points, such
that

(
A
4

)
is red. We claim that A forms a vertex set of a convex m-gon. Assume not,

and there is a point x of A inside the convex hull A′ of A. Triangulate A′. Then x will
be inside one of the triangles, say with vertex set {y, z, w}. Then {x, y, z, w} must be
colored blue, a contradiction.

Theorem 87 (Schur). For any number of colors k, there is a large enough N ∈ N so
that and any coloring of {1, 2, . . . , N} with k colors, there are numbers x, y, and z of
the same color such that x+ y = z.

Proof. Let N = Rk(3, 3, . . . , 3), where R is the multicolor Ramsey number for graphs
with k colors. Let c : [N ] → [k]. Let c′ : E(KN ) → [k] so that V (KN ) = [N ]
and c′(ij) = c(|i − j|). Then by Ramsey theorem, there is a monochromatic triangle
i, j, l, i < j < l, in KN , say of color s. So, c(l − j) = c(j − i) = c(l − i) = s. Let
x = l − j, y = j − i, z = l − i. Then x+ y = z and c(x) = c(y) = c(z) = s.

Definition 7.3. Let r ∈ N and A ∈ Zn×k.

• Matrix A is said to be r-regular r-regular matrixif there is a monochromatic solution of Ax = 0
for any r-coloring c : N→ [r] of N.

81



• Matrix A fulfils the column condition column conditionif there is a partition C1∪̇ · · · ∪̇Cl of the
columns of A such that the following holds: Let si :=

∑
c∈Ci c for i ∈ [l] be the

sum of columns in Ci. Then s1 = 0 and every si for i ∈ {2, . . . , l} is a linear
combination of the columns in C1∪̇ . . . ∪̇Ci−1.

For example, 2x1+x2+x3−4x4 fulfils the column condition since 2+1+1−4 = 0.

Theorem 88 (Rado). Let A ∈ Zn×k. If A fulfils the column condition, then A is
r-regular for every r ∈ N.

Lemma 89. For any s, t ∈ N with s ≥ t ≥ 1 and s ≥ 2 we have R(sK3, tK3) = 3s+2t.

Theorem 90 (Chvátal, Harary). Let G and H be graphs. Then R(G,H) ≥
(
χ(G)−

1
)(
c(H)− 1

)
+ 1 where c(H) is the order of the largest component of H.

Induced Ramsey numbers

We say that G →
ind

H if in any coloring of E(G) there is a monochromatic induced

copy of H. We shall prove bipartite induced Ramsey theorem. We need two lemmas
for that. We say that for a set X and a positive integer k ≤ |X|, a bipartite graph
(X ∪

(
X
k

)
, E) is an incidence graph if E = {X ′x : X ′ ∈

(
X
k

)
, x ∈ X,x ∈ X ′}.

Lemma 91. For any bipartite graph B, there is an incidence graph containing B as
an induced subgraph.

Proof. Let B = ({a1, . . . , an} ∪ {b1, . . . , bm}, E). Let I be an incidence graph, I =
(X ∪

(
X
n+1

)
, E), where X = {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {z1, . . . , zm}. Let
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φ : V (B)→ V (I) defined as follows:

φ(ai) = xi, i = 1, . . . , n,

φ(bi) = {zi} ∪ {φ(v) : v ∈ NB(bi)} ∪ Yi, Yi ⊆ {y1, . . . , yn}, i = 1, . . . , n.

We see that since for distinct Bi’s, φ(bi) contain distinct zi’s, all vertices b1, . . . , bn are
mapped into n distinct vertices of

(
X
n+1

)
. Morever, we see that φ(ai)φ(bj) ∈ E(I) if

and only if aibj ∈ E(B). Indeed, if aibj ∈ E(B), then φ(ai) = xi and, as ai ∈ NB(bj),
xi ∈ φ(bj), thus φ(ai)φ(bj) ∈ E(I). The other way around, if φ(ai)φ(bj) ∈ E(I), then
as φ(ai) = xi, xi ∈ φ(bj), thus ai ∈ NB(bj), so aibj ∈ E(B). This shows that B is an
induced subgraph of I.

Lemma 92. Let I = (X ∪
(
X
k

)
, E) and I ′ = (X ′ ∪

(
X′

2k−1

)
, E′), be two incidence

graphs, with |X ′| corresponding to the multicolor hypergraph Ramsey number with
22k−1 colors, uniformity 2k− 1, and the order of unavoidable monochromatic clique is
k|X|+ k − 1. Then I ′ →

ind
I.

Proof. Fix an order on X ′ = {x1, x2, . . .}. Let Y ′ =
(
X′

2k−1

)
. Let c : E′ → {r, b}, red

and blue. I.e., c is an edge coloring of the bipartite graph I ′ with parts X ′, Y ′. Each
vertex in Y ′ is incident to 2k − 1 edges colored r or b.

On the other hand, the vertices of Y ′ correspond to hyperedges of a complete (2k−1)-
uniform hypergraph H on vertex set X ′. Let c′ be the coloring of hyperedges of H
such that c′(y′) = (c(y′xi1), c(y′xi2), . . . , c(y′xi2k−1

)), i1 < i2 < . . . < i2k−1. I.e., c′

assigns binary vectors of lengths 2k−1 to the hyperedges of H. Thus the total number
of colors is at most 22k−1.
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Since |X ′| was defined as a respective Ramsey number, there is a set Z ⊆ X ′, |Z| =
k|X| + k − 1, such each set in

(
Z

2k−1

)
has the same color. This color is a vector with

entries r or b with 2k − 1 entries. By pigeonhole principle at least k of these entries
are the same, without loss of generality, r. Call the coordinates of the k red entries
good.

Now we shall find a red copy of I in a subgraph of I induced by Z and its neighbors. We
shall provide an explicit embedding φ of I. Let vertices φ(x), x ∈ X be in Z such that
there are k−1 vertices of Z between consecutive φ(x)’s. Let Z ′ = Z−{φ(x) : x ∈ X}.
Let y ∈

(
X
k

)
, say y = {xi1 , xi2 , . . . , xik}. Then let φ(y) = {φ(xi1), . . . , φ(xik)} ∪ {Z ′′},

where Z ′′ ⊆ Z ′ and φ(xi1), . . . , φ(xik) occupy good positions in φ(y). We see that φ
maps vertices of I into an induced subgraph of I ′ isomorphic to I. Moreover, since all
edges corresponding to good positions are red, this subgraph is red.

84



Theorem 93. For any bipartite graph B there is a bipartite graph I ′ such that
I ′ →

ind
B.

Proof. By the first lemma, we see that there is an incidence graph I such that B is an
induced subgraph of I. Let I ′ be an incidence graph guaranteed by the second lemma,
such that I ′ →

ind
I. Then I ′ →

ind
B.

Theorem 94 (Induced Ramsey Theorem, Deuber, Erdős, Hajnal & Pósa, 9.3.1).
We have that IR(G,H) is finite for all graphs G and H.

Concerning upper bounds for induced Ramsey numbers, there is the following con-
jecture due to Erdős: if G is an n-vertex graph, then there is a constant c > 0 such
that

IR(G,G) ≤ 2cn.

The best known upper bound is due to Conlon, Fox, and Sudakov, who showed that
IR(G,G) ≤ 2cn logn.

We say that a complete graph is lexically edge colored with a coloring c if its vertices
can be ordered v1, . . . , vn such that c(vivj) = c(vivk) for all i < j < k and moreover
c(vivi+1) 6= c(vjvj+1) for any 1 ≤ i < j < n.

Theorem 95 (Canonical Ramsey Theorem, Erdős-Rado 1950). For all k ∈ N there
is an n ∈ N such that any edge coloring of Kn with arbitrarily many colors contains a
Kk that is monochromatic, rainbow or lexical.

Theorem 7.4 (Chvátal-Rödl-Szemerédi-Trotter, 9.2.2). For any positive integer ∆
there exists a c ∈ N such that for every graph H with ∆(H) = ∆ we have R(H,H) ≤
c|V (H)|.

Corollary 96. For any n-vertex graph H with maximum degree 3 we have R(H,H) ≤
cn for some constant c > 0. This number grows much slower than R(Kn,Kn) ≥

√
2
n
.

In 1973, Burr and Erdős conjectured that for every positive integer d there is a constant
c = c(d) such that if H is a d-degenerate graph, then R(H,H) ≤ c|V (H)|. This was
established in 2016 by Choongbum Lee:

Theorem 97 (Lee). For every natural number d there is a constant c = c(d) such
that if H is d-degenerate graph on n vertices, then R(H,H) ≤ cn.

Theorem 98 (Anti-Ramsey Theorem, Erdős-Simonovits-Sós). For all n, r ∈ N we
have AR(n,Kr) =

(
n
2

)(
1− 1/(r − 2)

)(
1− o(1)

)
.
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8 Flows

Let H be an abelian group and G be a multigraph.

Note that some definitions of a multigraph are done using multisets. We can avoid
using multisets by considering the following definition. A multigraph is a triple,
(V,E, T ∗), where V and E are sets called vertex set and edge set respectively, and T ∗

is a set of tuples ({x, y}, e), x, y ∈ V (G), e ∈ E, such that for each e ∈ E there is a
unique tuple ({x, y}, e) in T ∗. If ({x, y}, e) ∈ T ∗, we say that x and y are endpoints
of e, if x = y, we say that e is a loop. If ({x, y}, e), ({x, y}, e′) ∈ T ∗, e 6= e′, x 6= y, we
say that e and e′ are parallel or multiple edges.

For an edge e with endpoints x and y, we shall be assigning a value to an ordered
triple (x, e, y). Let T (G) = {(x, e, y) : ({x, y}, e) ∈ T ∗(G)}.

Let f : T (G)→ H and let X,Y ⊆ V (G). We define

f(X,Y ) :=
∑

x∈X,y∈Y,(x,e,y)∈T (G),x 6=y

f(x, e, y),

and write f(x, Y ) for f({x}, Y ).

Definition 8.1. We say that a map f : T (G)→ H, is a circulation on G circulationif

(F1) f(x, e, y) = −f(y, e, x) for any edge with endpoints x and y, x 6= y

(F2) f(x, V (G)) = 0.

Lemma 99. Let f be a circulation on a multigraph G. Then for any subset X of
vertices

• f(X,X) = 0,

• f(X,V (G)) = 0,

• f(X,V (G)−X) = 0,

• If e = xy is a bridge, then f(x, e, y) = 0.

network, source,
sink, capacity

Let G be a graph, s, t ∈ V (G), be distinct vertices and c : T (G)→ N ∪ {0}. We call a
quadruple N = (G, s, t, c) a network with source s, sink t and capacity function c.
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Definition 8.2. A function f : T (G)→ R is a network flow network flow, or N -flow if

(F1) f(x, e, y) = −f(y, e, x) for any edge e with endpoints x and y, x 6= y,

(F2) f(x, V (G)) = 0, x ∈ V (G)− {s, t} and

(F3) f(x, e, y) ≤ c(x, e, y) for any edge e with endpoints x and y, x 6= y.

A cut cutin a network N is a pair (S, S), where S is a subset of vertices of G such that

s ∈ S, t 6∈ S and S = V (G)− S.
We say that c(S, S) =

∑
x∈S,y∈S,(x,e,y)∈T (G)

c(x, y) is the capacity capacity of cutof the cut.

Lemma 100. For any cut (S, S) and a network flow f in a network N , f(S, S) =
f(s, V (G)).

Proof.

f(S, S) = f(S, V )− f(S, S) = f(s, V ) +
∑

v∈S\{s}

f(v, V )− f(S, S) = f(s, V ) + 0− 0,

where we use properties (F1) and (F2).

Thus f(S, S) does not depend on the cut. The value f(s, V ) is also called the value
of f value, |f |and is denoted by |f |.

Theorem 8.3 (Ford-Fulkerson Theorem, 6.2.2). Let N = (G, s, t, c) be a network.
Then

max{|f | : f is an N − flow } = min{c(S, S) : (S, S) is a cut},

and there is an integral flow f : T → Z≥0 with this maximum flow value.

Proof. Since |f | = f(s, V ) = f(S, S) ≤ c(S, S), for any cut (S, S), we have that

max{|f | : f is an N − flow } ≤ min{c(S, S) : (S, S) is a cut}.

Next, we shall construct a flow f such that |f | = min{c(S, S) : (S, S) is a cut}.
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We shall define f0, f1, . . . - a sequence of N -flows such that f0(x, e, y) = 0 for all
(x, e, y) ∈ T (G), fi assigns integer values and |fi| ≥ |fi−1| + 1 for i ≥ 1. Note that
since |fi| ≤ min{c(S, S) : (S, S) is a cut} for all i = 0, 1, . . . , the sequence f0, f1, . . . is
finite. Let fn be defined. We shall either let f = fn or define fn+1.

Case 1 There is a sequence of vertices x0 = s, x1, . . . , xm = t and edges e0, . . . , em−1

such that xixi+1 = ei ∈ E(G) and f(xi, ei, xi+1) < c(xi, ei, xi+1), i = 0, . . . ,m− 1.

Let ε = min{c(xi, ei, xi+1)− f(xi, ei, xi+1) : i = 0, . . . ,m− 1}. Note that ε ∈ N. Let

fn+1(x, e, y) =


fn(x, e, y), (x, e, y) 6= (xi, ei, xi+1), i = 0, . . . ,m− 1,

fn(x, e, y) + ε, (x, e, y) = (xi, eixi+1), i = 0, . . . ,m− 1,

fn(x, e, y)− ε, (x, e, y) = (xi+1, ei, xi), i = 0, . . . ,m− 1.

Note that fn+1 is an N -flow, it takes integer values, and |fn+1| = |fn|+ ε ≥ |fn|+ 1.

Case 2 Case 1 does not hold. Let

S = {v ∈ V : ∃ path s = x0, e0, x1, . . . , eq, xq+1 = v,

f(xi, ei, xi+1) < c(xi, ei, xi+1), i = 0, . . . , q}.

Note that since we are not in Case 1, t 6∈ S. Also, s ∈ S. Thus (S, S) is a cut. From the
definition of S, we see that fn(x, e, y) = c(x, e, y) for all x ∈ S, y ∈ S, (x, e, y) ∈ T (G).
Thus fn(S, S) = c(S, S) and so |fn| ≥ min{c(S, S) : (S, S) is a cut}. Let f = fn.

Since the sequence f0, f1, . . . is finite, Case 2 must occur.

Group-valued flows

Definition 8.4. Let G = (V,E, T ∗) be a multigraph.

• If H is an abelian group, then a circulation f is an H-flow on G H-flowif f(x, e, y) 6= 0
for all (x, e, y) ∈ T . Sometimes f referred to as a nowhere-zero flow nowhere-zero.

A nowhere-zero Z2-flow.

• For k ∈ N a k-flow k-flowis a Z-flow f such that 0 < |f(x, e, y)| < k for all (x, e, y) ∈ T .
The flow number ϕ(G) of G flow number,

ϕ(G)
is the smallest k such that G has a k-flow.
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Theorem 8.5 (Tutte, 6.3.1). For every multigraph G = (V,E, T ∗) there is a polyno-
mial P ∈ Z[X] such that for any finite abelian group H the number of nowhere-zero
H-flows on G is P

(
|H| − 1

)
.

Proof. Use induction on the number of non-loop edges in G.
If this number is zero, i.e., all edges are loop edges, for any triple (x, e, x) with
({x, x}, e) ∈ T ∗, one can assign any value from H − {0} and obtain an H-flow. The
number of such assignments is (|H| − 1)||G||, that is a polynomial of |H| − 1.

Assume there is a non-loop edge e0 with endpoints x and y.
Let G1 = G− e0, G2 = G/e0, where G/e0 is a graph obtained from G by contracting
the endpoints x, y into a vertex v = vxy of e0 and removing the obtained loop (v, e0, v).
More formally,

V (G/e0) = V (G)− {x, y} ∪ {v},
E(G/e0) = E(G)− {e0},
T ∗(G/e0) =

(
T ∗(G) \ {({w,w′}, e) : w ∈ {x, y}, e ∈ E(G)}

)
∪
{

({v, w}, e) : ({x,w}, e) ∈ T ∗(G) or({y, w}, e) ∈ T ∗(G) and e 6= e0

}
.

We define the following sets:

F := {f : f is an H-flow on G},
F ′1 := {f : f is an H-flow on G1},
F ′2 := {f : f is an H-flow on G2},

F1 := {f : f is an H-circulation on G such that f(x, e, y) = 0 iff e = e0},
F2 := F1 ∪ F.

89

http://diestel-graph-theory.com/basic.html#165


Let P1 and P2 are polynomials guaranteed by the induction hypothesis with respect
to G1 and G2, i.e., |F ′i | = Pi(|H| − 1), i = 1, 2. We shall prove that the number of
H-flows of G is P2(|H| − 1)− P1(|H| − 1), thus a polynomial of |H| − 1.

It is sufficient for us to show that |F ′2| = |F2| and |F ′1| = |F1|. Indeed, if this is the
case, then, we have that |F ′1| = P1(|H| − 1), |F ′2| = P2(|H| − 1), so |F | = |F2| − |F1| =
|F ′2| − |F ′1| = P2(|H| − 1)− P1(|H| − 1), as desired.

It is easy to see that |F1| = |F ′1|. To see that |F2| = |F ′2|, we shall build two injections:
λ : F2 → F ′2 and µ : F ′2 → F2.

Let f ∈ F2. Note that f({x, y}, V−{x, y}) = 0 by Lemma 99. Construct g = λ(f) ∈ F2

as g(x′, e, y′) = f(x′, e, y′) for all (x′, e, y′) ∈ T (G) ∩ T (G1), g(x, e, t) = f(v, e, t) for
all (x, e, t) ∈ T (G) with t 6= v, g(y, e, t) = f(v, e, t) for all (y, e, t) ∈ T (G) with t 6= v
and g(t, e, v) = −g(v, e, t) for all (t, e, v) ∈ T (G2) with v 6= t. Finally, let g(v, e, v)
be equal to f(x, e, x) if (x, e, x) ∈ T (G), f(y, e, y) if (y, e, y) ∈ T (G) or f(x, e, y) if
(x, e, y) ∈ T (G), e 6= e0.

We see that g is an H-flow since (F1) is satisfied and (F2) is satisfied at v because of
f({x, y}, V − {x, y}) = 0 and (F2) is satisfied for other vertices because the values of
g on respective edges are the same as in f . To see that λ is an injection, consider two
different elements f1, f2 ∈ F2. If they differ on the triple (x′, e, y′), the images λ(f1)
and λ(f2) differ on the triple containing e.

Let f ∈ F ′2, let us construct g = µ(f) ∈ F2. Let g(w1, e, w2) = f(w′1, e, w
′
2) for all

(w1, e, w2) ∈ T (G2) and (w′1, e, w
′
2) ∈ T (G), where e 6= e0.

Construct g = µ(f) ∈ F ′2 as g(x′, e, y′) = f(x′, e, y′) for all (x′, e, y′) ∈ T (G) ∩ T (G2),
g(v, e, t) = f(x, e, t) for all (x, e, t) ∈ T (G) with t 6= v, g(v, e, t) = f(y, e, t) for all
(y, e, t) ∈ T (G) with t 6= v, g(t, e, u) = −g(u, e, t) for all (t, e, v) ∈ T (G2) with v 6= t
and u ∈ {x, y} and g(x, e, y) = f(v, e, v), g(y, e, x) = −f(v, e, v) for all (x, e, y) ∈ T (G).
Finally, let g(x, e, x) = f(v, e, v) for all (x, e, x) ∈ T (G) and g(y, e, y) = f(v, e, v) for
all (y, e, y) ∈ T (G).

Moreover, let

g(x, e0, y) = −g(x, V − {x, y})−
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(x, e, y) and

g(y, e0, x) = −g(y, V − {x, y})−
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(y, e, x).

Note that these values could be zero.

We need to check that g is a circulation that is non-zero on triples involving all edges
except perhaps e0. Property (F1) is satisfied by construction on e 6= e0. To see that
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(F1) is satisfied on e0, recall that g(x, V − {x, y}) + g(y, V − {x, y}) = g({x, y}, V −
{x, y}) = f(v, V −v) = 0 and g(x, e, y) = −g(y, e, x). So, g(x, V −{x, y}) = −g(y, V −
{x, y}) and

∑
(x,e,y)∈T (G),e6=e0,x 6=y g(x, e, y) = −

∑
(x,e,y)∈T (G),e6=e0,x 6=y g(y, e, x). Thus

g(x, e0, y) = −g(y, e0, x).

To ensure (F2), we need that g(w, V ) = 0, for all w ∈ V . If w 6∈ {x, y}, it holds from
construction and the fact that f(w, V ) = 0. If w ∈ {x, y}, we have

g(x, V ) = g(x, V − {x, y}) +
∑

(x,e,y)∈T (G),x 6=y

g(x, e, y)

= g(x, V − {x, y}) +
∑

(x,e,y)∈T (G),x6=y,e6=e0

g(x, e, y) + g(x, e0, y),

g(y, V ) = g(y, V − {x, y}) +
∑

(x,e,y)∈T (G),x 6=y

g(y, e, x)

= g(y, V − {x, y}) +
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(y, e, x) + g(y, e0, x).

Plug these values for g(x, e0, y) and g(y, e0, x) to obtain

g(x, V ) = g(x, V − {x, y}) +
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(x, e, y)

+(−g(x, V − {x, y})−
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(x, e, y)),

g(y, V ) = g(y, V − {x, y}) +
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(y, e, x)

+(−g(y, V − {x, y})−
∑

(x,e,y)∈T (G),x 6=y,e6=e0

g(y, e, x)).

Thus g(x, V ) = g(y, V ) = 0. So, g is a desired circulation.

We only need to check that µ is an injection. Consider two distinct maps f1, f2 ∈ F ′2.
If they differ on a triple (x′, e, y′) such that either x′ or y′ is not equal to v, then the
respective maps µ(f1) and µ(f2) are distinct. If f1(v, e, v) 6= f2(v, e, v) for e 6= e0, then
µ(f1) 6= µ(f2) on the respective triple. Finally, if f1 and f2 coincide on all triples not
involving e0, then µ(f1(x, e0, y)) = µ(f2(x, e0, y)) by definition of the value assigned
to (x, e0, y) (as it was expressed in terms of values on other triples). Thus µ is an
injection.
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Corollary 101. If an H-flow on G exists for some finite Abelian group H, then there
is also an H̃-flow on G for all finite Abelian groups H̃ with |H̃| = |H|. For example,
if a Z4-flow exists, then a Z2 × Z2-flow also exists.

Theorem 102 (Tutte, 6.3.3). A multigraph admits a k-flow if and only if it admits a
Zk-flow.

Theorem 103 (Tutte, 6.5.3). For a plane graph G and its dual G∗ we have χ(G) =
ϕ(G∗).

Lemma 104. A graph has a 2-flow if and only if all of its degrees are even.

Lemma 105. A cubic (3-regular) graph has a 3-flow if and only if it is bipartite.

Conjecture (Tutte’s 5-Flow Conjecture). Every bridgeless multigraph has flow num-
ber at most 5.

Theorem 106 (Seymour, 6.6.1). Every bridgeless graph has flow number at most 6.
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9 Random graphs

In this section we deal with randomly chosen graphs. We will often use the “prob-
abilistic method”, a proof method for showing existence: By proving that an object
with some desired properties can be chosen randomly (in some probability space) with
non-zero probability, we also show that such an object exists.

Definition 9.1.

• G(n, p) is the probability space on all n-vertex graphs that results from inde-
pendently deciding whether to include each of the

(
n
2

)
possible edges with fixed

probability p ∈ [0, 1]. This model is called the Erdős-Rényi model Erdős-Rényiof random
graphs.

• A property propertyP is a set of graphs, e.g. P = {G : G is k-connected}.

Let (pn) ∈ [0, 1]N be a sequence. We say that G ∈ G(n, pn) almost always almost alwayshas

property P if Prob
(
G ∈ G(n, pn

)
∩ P)→ 1 for n→∞. If (pn) is constant p, we

also say in this case that almost all graphs in G(n, p) have property P.

• A function f(n) : N→ [0, 1] is a threshold function threshold functionfor property P if:

– For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−→ 0 the graph G ∈ G(n, pn) almost

always does not have property P.

– For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−→ ∞ the graph G ∈ G(n, pn) almost

always has property P.

Note that not all properties P have a threshold function.

Lemma 107. Let G ∈ G(n, p), let S ⊆ V (G). Let H be a fixed graph on m edges and
vertex set S. Then

Prob(G[S] = H) = pm(1− p)(
|S|
2 )−m, Prob(H ⊆ G[S]) = pm.

In particular, for a given graph H on n vertices and m edges,

Prob(H = G(n, p)) = pm(1− p)(
n
2)−m.

Proof. Since the edges are chosen independently with probability p, we choose the
m edges of H with probability pm and

(|S|
2

)
− m non-edges of H with probability

(1− p)(
|S|
2 )−m. For subgraph containment, we care only about the edges, and chose or

do not choose the other pairs with probability 1 each.
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Lemma 108. Let p ∈ (0, 1) be fixed, suppose G ∈ G(n, p), and let H be a fixed graph.

Then Prob(H ⊆
ind

G)
n→∞→ 1.

Proof. Let k = |V (H)|. Let n = tk + ε, 0 ≤ ε < k. Consider t pairwise disjoint sets
A1, . . . , At of vertices in G, each of size k. Then

Prob(H *
ind

G) ≤ Prob(H *
ind

G[A1] ∧H *
ind

G[A2] ∧ · · · ∧H *
ind

G[At])

= Prob(H *
ind

G[A1]) · · ·Prob(H *
ind

G[At])

≤ (1− r)t,

where r is the probability that a k-vertex subset of G induces an isomorphic copy of
H. We see that r depends on k, p, and H, but is does not depend on n. So, it is an
absolute constant greater than zero. On the other hand, t = bn/kc → ∞ as n → ∞.
Thus Prob(H *

ind

G)→ 0 as n→∞.

Lemma 109. Let n ≥ k ≥ 2 be integers. Let G ∈ G(n, p).

Then Prob(α(G) ≥ k) ≤
(
n
k

)
(1− p)(

k
2) and Prob(ω(G) ≥ k) ≤

(
n
k

)
p(
k
2).

Proof. The probability that a fixed k element set in V (G) is independent is (1− p)(
k
2).

The probability that a fixed k element set in V (G) induces a clique is p(
k
2). Denote

the k-element subsets of V (G) by U1, U2, . . . , U(nk)
.

Thus

Prob(α(G) ≥ k) = Prob(∃U ⊆ V (G), G[U ] = Ek)

≤ Prob((G[U1] = Ek) ∨ (G[U2] = Ek) ∨ · · · ∨ (G[U(nk)
] = Ek))

≤
(
n

k

)
(1− p)(

k
2),

moreover

Prob(ω(G) ≥ k) = Prob(∃U ⊆ V (G), G[U ] = Kk)

≤ Prob((G[U1] = Kk) ∨ (G[U2] = Kk) ∨ · · · ∨ (G[U(nk)
] = Kk))

≤
(
n

k

)
p(
k
2),
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Lemma 110 (11.1.5). Let G ∈ G(n, p). Then the expected number of cycles of length
k in G is

(n)k
2k

pk,

where (n)k = n · (n− 1) · · · (n− k + 1).

Proof. Let Ck be the set of all cycles of length k in Kn. For a cycle C ∈ Ck, let XC = 1
if C ⊆ G, let XC = 0, otherwise. Let X be the number of cycles of length k in G, i.e.,
X =

∑
C∈Ck XC . Then E(XC) = Prob(C ⊆ G) = pk. Moreover,

E(X) =
∑
C∈Ck

E(XC) = |Ck| pk =
(n)k
2k

pk.

Theorem 9.2 (Erdős). For any k ≥ 2 there is a graph G on
√

2
k

vertices such that
α(G) < k and ω(G) < k. This implies R(k, k) ≥ 2k/2.

Proof. Let n =
√

2
k

and G ∈ G(n, 1/2). Then

Prob((α(G) ≥ k) ∨ (ω(G) ≥ k)) ≤ Prob(α(G) ≥ k) + Prob(ω(G) ≥ k) ≤ 2−(k2)+1 < 1.

Thus Prob((α(G) < k) ∧ (ω(G) < k)) > 0. Therefore there is a graph G such that
α(G) < k and ω(G) < k.

We need the following standard tool from probability theory.

Theorem 111 (Markov’s inequality). Let X be a non-negative random variable and
let t > 0. Then

Prob(X ≥ t) ≤ E(X)/t.

Theorem 9.3 (Erdős-Hajnal, 11.2.2). For any integer k ≥ 3 there is a graph with
girth greater than k and chromatic number greater than k.

Proof. Fix ε, 0 < ε < 1/k. Let p = nε−1 and let G ∈ G(n, p), n ≥ 1. Let Y be the
number of cycles of length at most k in G. Then

E(Y ) =

k∑
i=3

(n)i
2i

pi ≤ 1

2

k∑
i=3

nipi ≤ 1

2
knkpk.

Here we used the fact that (np)i < (np)k for i < k, since np = nε ≥ 1. By Markov’s
inequality,

Prob
(
Y ≥ n

2

)
≤ E(Y )

n/2
≤ knk−1pk ≤ knkε−1.
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Note that kε− 1 < 0, so

Prob
(
Y ≥ n

2

)
n→∞→ 0.

Consider α(G). We have that

Prob
(
α(G) ≥ n

2k

)
<

(
n

n/(2k)

)
(1− p)(

n/(2k)
2 ).

Thus
Prob

(
α(G) ≥ n

2k

)
n→∞→ 0.

Choose n sufficiently large so that Prob(Y ≥ n
2 ) < 1/2 and Prob(α(G) ≥ n

2k ) < 1/2.
Thus there is a graph G with at most n/2 cycles of length at most k and with α(G) <
n
2k . Let G′ be a graph obtained from G by deleting a vertex from each cycle of length
at most k. Then |V (G′)| ≥ n/2, α(G′) ≤ α(G) < n

2k , and G′ has girth larger than k.
Moreover,

χ(G′) ≥ |V (G′)|
α(G′)

> k.

Thus G′ is the desired graph.

Lemma 112 (11.3.4). For all p ∈ (0, 1) and ε > 0 almost all graphs G in G(n, p) fulfil

χ(G) >
log
(
1/(1− p)

)
2 + ε

· n

log n
.

Remark. Asymptotic behaviour of G(n, p) for some properties:

• pn =
√

2/n2 ⇒ G almost always has a component with > 2 vertices

• pn = 1/n ⇒ G almost always has a cycle

• pn = log n/n ⇒ G is almost always connected

• pn = (1 + ε) log n/n ⇒ G almost always has a Hamiltonian cycle

• pn = n−2/(k−1) is the threshold function for containing Kk

In the following we prove several results concerning threshold functions. Before doing
so, we need a few more tools from probability theory.

Theorem 113 (Chebyshev’s inequality). Let X be a real random variable. Let µ =
E(X) and σ2 = Var(X). Then

Prob(|X − µ| ≥ t) ≤ σ2/t2,

for any t > 0.
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Theorem 114 (Chernoff’s inequality). Let Xi’s be independent random variables,
Xi ∈ {0, 1}, i = 1, . . . , n. Let X =

∑n
i=1Xi and let µ = E(X). Then

Prob(X ≤ (1− δ)µ) ≤ e−δ
2µ/2,

for any positive δ.

Lemma 115. The threshold function for containing a cycle is f(n) = 1/n.

Proof. First assume that p = o(1/n). Let X denote the number of cycles in G(n, p).
Then by Markov’s inequality Prob(G(n, p) contains a cycle ) ≤ E(X) ≤

∑
i≥3(n)ip

i/(2i) ≤
(np)3

∑
i≥0(np)i ≤ (np)3

1−np →n→∞ 0.

Now assume that p = ω(1/n). It is sufficient for us to show that the number of edges
in G(n, p) is greater than or equal to n with probability approaching 1 as n goes to
infinity.

Assume that n is large enough and p > (2 + ε)/n, for positive ε. Let δ be chosen
such that (1 − δ) = 2/(2 + ε). Let Y denote the number of edges in G(n, p). Then
µ := E(Y ) = p

(
n
2

)
) ≥ (2 + ε)/n(n(n − 1))/2 = (2 + ε)(n − 1)/2. So by Chernoff’s

inequality Prob(Y ≤ (1−δ)µ) ≤ (1−δ)µ) ≤ e−δ2µ/2 →n→∞ 0. Since (1−δ)µ = n−1,
we have that Prob(Y ≥ n)→n→∞ 1.

Finally, we consider the threshold for containing a fixed graph H.

Lemma 116. Let H be a fixed graph on vH vertices and eH edges. Then n−vH/eH is
the threshold function for containing H as a subgraph.

Proof. We shall prove one part in general and the second only for H = K3.

Assume first that p = o(n−vH/eH ). Let X denote the number of copies of H in
G(n, p). Then µ = E(X) =

(
n
vH

)
cHp

eH ≤ cHn
vHpeH , where cH is a function of H

(more specifically, of Aut(H)). Then µ approaches 0 as n approaches infinity. This
implies that the Prob(H ⊆ G(n, p))→n→∞ 0, by Markov’s inequality. This proves the
first part of the lemma.

Now, assume that p = ω(1/n) and H = K3. Assume that p = d/n for sufficiently
large d. Let X be the number of K3’s in G = G(n, p) on vertex set [n]. Let Xi,j,k

be a random variable that is 1 if {i, j, k} induces K3 in G, and 0, otherwise. Then
X =

∑
{i,j,k}∈([n]

3 )Xi,j,k. We shall estimate the expected value, µ and the variance,

σ2, of X. We have that µ =
(
n
3

)
p3 ≈ d3/6. Further,

E(X2) = E((
∑
ijk

Xi,j,k)2) = E(
∑

ijk,i′j′k′

Xi,j,kXi′j′k′),

where the sums are over all triples and all pairs of triples, respectively, in
(

[n]
3

)
(and

where we have abbreviated writing triples {i, j, k} as simply ijk).
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Let S1 = {{{i, j, k}, {i′, j′, k′}} ∈
(

[n]
3

)2
: |{i, j, k} ∩ {i′, j′, k′}| ≤ 1}.

Let S2 = {{{i, j, k}, {i′, j′, k′}} ∈
(

[n]
3

)2
: |{i, j, k} ∩ {i′, j′, k′}| = 2}.

Let S3 = {{{i, j, k}, {i′, j′, k′}}} ∈
(

[n]
3

)2
: |{i, j, k} ∩ {i′, j′, k′}| = 3}.

Then

E(X2) =
∑
S1

E(Xi,j,kXi′,j′,k′) +
∑
S2

E(Xi,j,kXi′,j′,k′) +
∑
S3

E(Xi,j,kXi′,j′,k′),

where the sums are over all pairs of triples in S1, S2, S3, respectively. Therefore,

E(X2) = p6|S1|+ p5|S2|+ p3|S3| ≤ p6
(
n
3

)2
+ cp5

(
n
5

)
+ p3

(
n
3

)
≤ µ2 + o(1) + d3/6.

Thus Var(X) = E(X2) − E2(X) ≤ d3/6 + o(1). So, using Chebyshev’s inequality we
obtain

Prob(X = 0) ≤ Prob(|X−E(X)| ≥ E(X)) ≤ Var(X)/E(X)2 ≤ (d3/6+o(1))/(d6/36).

The last term above is at most 6/d3 + o(1). If d = d(n) approaches infinity as n goes
to infinity, we have that Prob(X 6= 0)→n→∞ 1.

Lemma 9.4 (Lovász Local Lemma). Let A1, . . . , An be events in some probabilistic
space. If Prob(Ai) ≤ p ∈ (0, 1), each Ai is mutually independent from all but at
most d ∈ N Ais and ep(d+ 1) ≤ 1, then

Prob

(
n∧
i=1

Ai

)
> 0.

Lemma 117. The Van-der-Waerden’s number W (k) is the smallest n such that any
2-coloring of [n] contains a monochromatic arithmetic progression of length k. We can
prove W (k) ≥ 2k−1/(ek2) with the Lovász Local Lemma.

Theorem 118 (Erdős-Rényi, 1960). Let H be a graph with at least one edge. Let
ε′(H) = max{|E(H ′)|/|V (H ′)| : H ′ ⊆ H}. Then t(n) = n−1/ε′(H) is a threshold
function for a property P = {G : H ⊆ G}.

Theorem 119 (Bollobás-Thomason, 1987). There is a threshold function for any
increasing graph property, i.e., a property that is closed under taking supergraphs.
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10 Hamiltonian cycles

Lemma 10.1 (Necessary condition for the existence of a Hamiltonian cycle). If G has
a Hamiltonian cycle, then for every non-empty S ⊆ V the graph G − S cannot have
more than |S| components.

Non-hamiltonian graph.

Theorem 10.2 (Dirac, 10.1.1). Every graph with n ≥ 3 vertices and minimum degree
at least n/2 has a Hamiltonian cycle.

Proof. First we note that G is connected, otherwise a smaller component has all ver-
tices of degree at most n/2 − 1. Consider a longest path P = (v0, . . . , vk). Then
N(v0), N(vk) ⊆ V (P ). Since |N(v0)|, |N(vk)| ≥ n/2, and k ≤ n − 1, we have by pi-
geonhole principle that v0vk ∈ E(G) or there is i, 0 < i < k−1 such that v0vi+1 ∈ E(G)
and vivk ∈ E(G). In any case there is cycle C on k + 1 vertices in G. If k + 1 = n,
C is a Hamiltonian cycle and we are done. If k + 1 < n, since G is connected there
is a vertex v not in C that is adjacent to a vertex with C. Then v and C induce a
graph that contains a spanning path, i.e. a path on k + 2 vertices, a contradiction to
maximality of P .
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Theorem 120. Every graph on n ≥ 3 vertices with α(G) ≤ κ(G) is Hamiltonian.

Theorem 121 (Tutte, 10.1.4). Every 4-connected planar graph is Hamiltonian.

Definition. Let G = (V,E) be a graph. The square square, G2of G, denoted by G2, is the graph
G2 := (V,E′) with E′ := {uv : u, v ∈ V, dG(u, v) ≤ 2}.

Theorem 122 (Fleischner’s Theorem, 10.3.1). If G is 2-connected, then G2 is Hamil-
tonian.

We say that an integer sequence (b1, b2, . . . , bn) is pointwise greater than an integer
sequence (a1, a2, . . . , an) if ai ≤ bi holds for all 1 ≤ i ≤ n. We call an integer sequence
(a1, a2, . . . , an) a Hamiltonian sequence if every graph on n vertices with degree se-
quence pointwise greater than (a1, a2, . . . , an) is Hamiltonian.

Theorem 10.3 (Chvátal, 10.2.1). An integer sequence (a1, a2, . . . , an) with 0 ≤ a1 ≤
· · · ≤ an < n and n ≥ 3 is Hamiltonian if and only if ai ≤ i implies an−i ≥ n − i for
all i < n/2.
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Index

=, see isomorphic
A-B-path, 10
AR(n,H), see anti-Ramsey
Cn, see cycle
En, see empty graph
F (G), see faces
G = MX, 39
G = TX, 39
G ∩G′, 14
G ∪G′, 14
G, see graph
G+ F , 14
G− F , 14
G− U , 14
G[X], see induced subgraph
G[f ], see boundary of f
G ◦ e, 15
G2, see square
H-factor, 23
H-flow, 88
H-path, 31
IR(G,H), see induced Ramsey
K(n, k), see Kneser graph
Ks
r , 64

Kn, see complete graph
Km,n, see complete bipartite graph
L-list-colorable, 48
N(v), see neighbourhood
Pn, see path
Qn, see hypercube
R(G,H), see graph Ramsey
R(k), see Ramsey
R(k, l), see asymmetric Ramsey
Rr(l1, . . . , lk), see hypergraph Ramsey
T (G, f), 23
T (n, r), see Turán graph
X 4 G, see minor
∆(G), see maximum degree
EX(n,H), 64
‖G‖, see size
|G|, see order
|f |, see value

α(G), see co-clique number
ch′(G), see edge choosability
ch(G), see choosability
χ′(G), see chromatic index
χ(G), see chromatic number
χcr(H), see critical chromatic number
deg(v), see degree
δ(G), see minimum degree
diam(G), see diameter
`-edge-connected, 25
ε-regular pair, 73
ε-regular partition, 73
ex(n,H), see extremal number
κ′(G), see edge-connectivity
κ(G), see connectivity
κ′(G), see edge-connectivity
λ(G), see spectrum
λmax(G), see spectral radius
ν(G), see matching
ω(G), see clique number
G, see complement
dim(X,≤), see poset dimension
rad(G), see radius
', see isomorphic
⊆, see subgraph
⊇, see supergraph
τ(G), see vertex cover
ϕ(G), see flow number
d-degenerate, 16
d(G), see average degree
d(X,Y ), see density
d(u, v), see distance
d(v), see degree
f -factor, 23
g(G), see girth
k-connected, 25
k-factor, 17
k-flow, 88
k-linked, 25
k-list-colorable, see k-list-colorable
r-regular matrix, 81
t(n, r), 64
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z(m,n; s, t), see Zarankiewicz

acyclic, 10
adjacency matrix, 8
adjacent, 4
almost always, 93
anti-Ramsey, 75
arc, 4, 36
asymmetric Ramsey, 75
average degree, 8

bipartite, 10
block, 35
block-cut-vertex graph, 35
boundary of f , 37
bridge, see cut edge

capacity, 86
capacity of cut, 87
choosability, 48
chromatic index, 16
chromatic number, 16
circulation, 86
circumference, 15
clique, 10
clique number, 53
closed walk, 10
co-clique number, 53
column condition, 82
complement, 15
complete r-partite, 6
complete bipartite graph, 6
complete graph, 5
component, 10
connected, 10
connected component, see component
connectivity, 25
contract, 15
copy, 10
critical chromatic number, 24
cubic, 8
cut, 87
cut edge, 25
cut set, 25
cut vertex, 25

cycle, 5

degeneracy, 16
degree, 8
degree sequence, 8
density, 73
diameter, 15
directed graph, 4
distance, 15

ear, 31
ear-decomposition, 31
edge, 4
edge choosability, 48
edge-connectivity, 25
empty graph, 5
endpoint of arc, 36
Erdős-Rényi, 93
extremal number, 64

faces, 37
factor, see k-factor
flow number, 88
forest, 10
frontier, 36

girth, 15
graph, 4
graph Ramsey, 75

Hamiltonian, 15
homeomorphic, 36
homeomorphism, 36
hypercube, 7
hypergraph, 4
hypergraph Ramsey, 75

incidence poset, 46
incident, 4
independent paths, 10
independent set, 10
induced copy, see copy
induced Ramsey, 75
induced subgraph, 9
inner face, 37
interior of arc, 36
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isolated vertex, 8
isomorphic, 4

Kneser graph, 6

leaf, 8
leaf block, 35
lexical, 75
line graph L(G), 29

matching, 17
maximal, 10
maximally plane, 37
maximum degree, 8
minimal, 10
minimum degree, 8
minor, 39
monochromatic, 75
multigraph, 4

neighbour, 7
neighbourhood, 7
network, 86
network flow, 87
non-trivial, 7
nowhere-zero, 88

order, 7
outer face, 37
outerplanar graph, 37

partial order, 46
partite sets, 10
path, 5
perfect graph, 53
perfect matching, 17
Petersen graph, 6
planar embedding, 37
planar graph, 37
plane graph, 36
polygon, 36
poset, 46
poset dimension, 46
proper edge colouring, 16
proper vertex colouring, 16
property, 93

radius, 15
rainbow, 75
Ramsey, 75
region, 36
regular, 8

separate, 26, 36
sink, 86
size, 7
source, 86
spanning subgraph, 10
spectral radius, 54
spectrum, 54
square, 98
straight line segment, 36
subdivision, 39
subgraph, 9
supergraph, 9

threshold function, 93
topological minor, 39
total order, 46
traceable, 15
tree, 10
triangle, 5
triangulation, 37
Turán graph, 64

unlabeled graph, 5

value, 87
vertex, 4
vertex cover, 17

walk, 10

Zarankiewicz, 69
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